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Abstract

Hyperspectral images (HSI) capture the full electromagnetic spectrum for each pixel
in a scene. They often hold hundreds of channels per pixel, providing significantly
more information compared to a comparably sized RGB color image. As the cost of
obtaining these images decreases, there is a need to create effective ways for storing,
transferring, and interpreting hyperspectral data. In this thesis, we develop several
neural compression-based methods for hyperspectral images. Our methodology re-
lies on transforming hyperspectral images into implicit neural representations (INR),
specifically neural functions that establish a correspondence between coordinates and
features. We use a multilayer perception (MLP) network with sinusoidal activation
functions that “learns” to map pixel locations to pixel spectrum for a given hyper-
spectral image. This representation thus acts as a compressed encoding of this im-
age, and the original image is reconstructed by evaluating this network at each pixel
location. In the other variation of using implicit neural representation to compress
hyperspectral images, a sampling scheme is introduced to achieve better compression
times while keeping decoding errors low. In our other method, instead of explicitly
saving the weights of the implicit neural representation, the modulations that are ap-
plied to a base network that has been meta-learned are recorded. These modulations
serve as a compressed coding for the hyperspectral image. An assessment of the pro-
posed approach was conducted using four benchmarks: Indian Pines, Jasper Ridge,
Pavia University, and Cuprite. The proposed method is evaluated against sixteen
other schemes ((1) JPEG, (2) JPEG2000, (3) PCA-DCT, (4) PCA-JPEG2000, (5) MPEG,
(6) X264, (7) X265, (8) PCA-X264, (9) PCA-X265, (10) FPCA-JPEG2000, (11) 3D-DCT,
(12) 3D-DWT-SVR, (13) WSRC, (14) HEVC, (15) RPM, and (16) 3D-SPECK.) for hyper-
spectral image compression, and according to the Peak Signal-to-Noise Ratio (PSNR)

and Structural Similarity Index Measure (SSIM) metrics, the method developed in this

111



study achieves state-of-the-art compression rates at low-bit rates. We also used a large
hyperspectral image dataset, compressed it using our methods, and compared our
results with JPEG and MPEG. Finally, we conducted task-aware hyperspectral image
compression, in which regions are chosen according to a task, and hyperspectral im-

ages are compressed using our proposed method.

Keywords: hyperspectral image compression; implicit neural representations; task-

aware compression; meta networks
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Chapter 1

Introduction

Hyperspectral images capture the electromagnetic spectrum per pixel, in contrast to
color images, which typically record three values per pixel, or grayscale images, which
record a single intensity value per pixel [Goetz et al., 1985]. As a result, each pixel
in a hyperspectral image has tens or even hundreds of values that correspond to re-
flectance measurements made at different frequency bands. Consequently, compared
to grayscale or color images, hyperspectral images present more opportunities for ob-
ject detection, material identification, and scene analysis. It is not surprising that hy-
perspectral images have found widespread use in fields like remote sensing, biotech-
nology, crop analysis, environmental monitoring, food production, medical diagnosis,

pharmaceutical industry, mining, and oil and gas exploration, among others.

The capture, storage, processing, and transmission costs of hyperspectral images
continue to be high. Hyperspectral sensors are expensive. A typical hyperspectral
image requires an order of magnitude more storage space than that needed to store a
typical color image that has the same spatial resolution. Thus, there is significant inter-
est in the community in developing efficient methods for capturing, storing, sending,

and analyzing hyperspectral data.
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1.1 Thesis Focus

This thesis examines the issue of hyperspectral image compression, demonstrating
its crucial role in reducing storage and transmission costs by leveraging neural im-
plicit representations. Specifically, the thesis introduces novel compression methods
that optimize storage efficiency while preserving spectral fidelity, as validated through

benchmark experiments.

1.2 Applications

Hyperspectral imaging (HSI) is a powerful technology that captures spatial and spec-
tral information across hundreds of narrow, contiguous frequency bands. Unlike con-
ventional imaging, which relies on broad spectral bands (e.g., RGB), HSI provides
detailed spectral signatures that enable precise material identification, environmental
monitoring, industrial inspection, and medical diagnostics [Kruse and Perry, 2009].
HSI allows us to combine spectral and spatial information, offering unparalleled ca-
pabilities in detecting, classifying, and mapping materials with high accuracy.

HSI’s unique ability to capture rich spectral information across the electromagnetic
spectrum—from the visible (VIS) and near-infrared (NIR) to the short-wave infrared
(SWIR) and beyond—enables applications in agriculture, remote sensing, mineral ex-
ploration, healthcare, and security. This section explores the fundamental principles

of hyperspectral imaging, highlighting its core features and real-world applications.

1.2.1 Agriculture & Farming

In precision agriculture, hyperspectral sensors on satellites or drones analyze crop
health by detecting subtle spectral variations in nutrient levels, water stress, and dis-

ease presence [Lu et al., 2020]. Farmers can make data-driven decisions on fertilizer
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application, irrigation, and pest control, optimizing resources while increasing yield

[Madani and Mclsaac, 2021].

1.2.2 Mineral Exploration

Similarly, in mineral exploration, HSI enables the detection of mineral deposits and
geological compositions by analyzing their unique spectral reflectance properties. In-
stead of relying on intrusive geological surveys and drilling, geologists can map mineral-
rich areas remotely, optimizing resource extraction and reducing costs [Wolfe and

Black, 2018].

1.2.3 Industrial Quality Control

In industrial applications, hyperspectral sensors enhance quality control in manufac-
turing by identifying contaminants, assessing product consistency, and detecting de-
fects in pharmaceuticals, textiles, and food products. Even minor spectral deviations
may indicate spoilage, chemical inconsistencies, or defects, ensuring high manufac-

turing standards [Kruse and Perry, 2009].

1.2.4 Environment Monitoring

Hyperspectral imaging plays a crucial role in environmental monitoring and land
use classification. By analyzing spectral characteristics, HSI can distinguish between
forests, water bodies, and urban areas, facilitating long-term studies on deforestation,
urban expansion, and climate change [Sommer et al., 1998]. Additionally, hyperspec-
tral sensors can detect oil spills, monitor water quality, and assess pollution levels by

identifying spectral anomalies in water bodies [Bansod et al., 2018].
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1.2.5 Security & Defense

In security and defense, hyperspectral imaging enables threat detection, surveillance,
and hazardous material identification. Since explosives, concealed weapons, and toxic
substances have unique spectral signatures, hyperspectral sensors can detect these
materials even if disguised or hidden, improving border security and airport screen-

ing [Vishnu et al., 2013].

1.2.6 Vehicle Safety

In autonomous navigation, self-driving vehicles use hyperspectral imaging to classify
road surfaces, lane markings, and obstacles. By distinguishing between pavement,
ice, or water through spectral differences, hyperspectral imaging enhances safety in

changing environmental conditions [Feng et al., 2019].

1.2.7 Biomedical & Healthcare

HSI has emerged as a valuable tool in medical diagnostics and surgical guidance.
The ability to differentiate healthy and diseased tissues based on spectral properties
enhances non-invasive disease detection and precision surgery [Madani and Mclsaac,
2021].

In cancer diagnostics, hyperspectral imaging enables early-stage tumor detection
by identifying subtle spectral differences between normal and malignant tissues [Fei,
2019]. Unlike traditional biopsy-based methods, hyperspectral imaging offers real-
time, non-invasive analysis, aiding in early intervention and improved patient out-
comes.

Furthermore, in wound assessment and infection monitoring, hyperspectral imag-
ing provides insights into tissue oxygenation, blood flow, and healing progress. Stud-

ies have explored its feasibility in assessing burn injuries, diabetic ulcers, and skin
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disorders, offering objective and quantitative assessments for medical professionals

[Madani and Mclsaac, 2021].

1.2.8 Food Safety

Hyperspectral imaging is revolutionizing food quality assessment and forensic inves-
tigations. In food safety, HSI detects spoilage indicators, contaminants, and nutritional
content in fruits, vegetables, and packaged products [Liu et al., 2017]. By analyzing
spectral properties, manufacturers can ensure higher quality control and reduced food

waste.

1.2.9 Crime Scene Forensics

In forensics, hyperspectral imaging aids in crime scene analysis, trace evidence de-
tection, and fingerprint analysis. Since different materials (e.g., blood, drugs, fibers)
reflect light uniquely, hyperspectral imaging provides detailed spectral differentiation
that enhances forensic accuracy [Edelman et al., 2012]. This technology is increasingly
used in law enforcement and counter-terrorism efforts to identify substances and re-

construct crime scenes with high precision.

Crane et al. [Crane et al., 2007] showcase the capability of infrared hyperspectral
imaging (IR HSI) in detecting latent, untreated fingermarks on a variety of porous sur-
faces, including copier paper, cigarette butt paper, U.S. dollar bills, and postcards, as
well as non-porous surfaces such as trash bags, soda cans, and tape [Crane et al., 2007].
Notably, fingermarks on the soda can, and black trash bag were distinctly visible when
examining the intensity band image at 9842 nm, corresponding to the asymmetric O-

C-C stretch in esters (see Fig. 1.1).
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Figure 1.1: Cut and flattened Dr. Pepper soda can with a deposited fingermark. (A)
The soda can be imaged using a document scanner. (B) An infrared image of the
highlighted area was generated by mapping the band intensity at 9842 nm. Adapted
from [Crane et al., 2007].
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1.2.10 Future Applications

One of HSI's key strengths is its ability to capture data across a broad spectral range,
from visible (400 to 700 nm) to near-infrared (700 to 1000 nm) and short-wave infrared
(1000 to 2500 nm). Different spectral regions provide information on the biological,

chemical, and physical properties of materials:

e Visible (400-700 nm): Captures data in the human-perceivable spectrum for easy

interpretation;

* Near-infrared (700-1000 nm): Useful for detecting plant health, organic materi-

als, and moisture content; and

¢ Short-wave infrared (1000-2500 nm): Provides information on mineral compo-

sition, industrial contaminants, and chemical compounds.

The ability to collect detailed spectral data across multiple wavelengths makes hyper-
spectral imaging highly adaptable for diverse industrial, scientific, and security ap-
plications. The area that investigates this makes hyperspectral capture, storage, and

analysis offer exciting opportunities for knowledge generation.

1.3 Hyperspectral Image Compression

Figure 1.2 is a cube image taken by the AVIRIS satellite of the Jet Propulsion Labora-
tory (JPL) above Moffett Field in California. The false-color image on top of Figure
1.2 depicts a complex structure in the water and evaporation ponds to the right. The
Moffett Field airport is also visible on the top of the cube.

Figure 1.3 illustrates the storage requirements for different image types: RGB, Mul-
tispectral, and Hyperspectral. As shown, hyperspectral images require substantially

more storage space than RGB and multispectral images due to the vast number of
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Figure 1.2: The JPL’s AVIRIS hyperspectral data cube provided on a NASA ER-2 plane
over Moffett Field. The top layer represents a pseudocolor visualization of the scene,
while the stacked layers illustrate the multiple spectral bands that compose the hyper-
spectral image, capturing detailed spectral information across different wavelengths.

spectral bands captured in hyperspectral imaging. While an RGB image typically con-
tains only three bands (red, green, and blue), hyperspectral images can have hundreds
of bands, providing much richer spectral information but at the cost of increased data
size. This makes efficient compression techniques particularly important for hyper-
spectral image storage and transmission. In comparison, multispectral images, which
capture a moderate number of bands, require more storage than RGB images but sig-
nificantly less than hyperspectral data. This Figure underscores the need for opti-
mized compression methods for hyperspectral images to manage their large storage

demands.

1.4 Thesis Contributions

Learning-based compression techniques have seen a recent rise in interest. To learn
compact representations of the input signals, for instance, autoencoders [Hinton and
Zemel, 1993] and rate-distortion autoencoders [Alemi et al., 2018, Balle” et al., 2017]
have been employed. In this situation, the compressed representation of the input
signal is provided by the network weights in conjunction with the signal signature,

which is the latent representation in the case of autoencoders. Simultaneous studies
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Figure 1.3: Comparison of storage requirements for different image types (RGB, Multi-
spectral, and Hyperspectral). Hyperspectral images require significantly more storage
space due to their high spectral resolution and large number of spectral bands, while
RGB images use the least storage space as they contain only three bands.
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are investigating the application of Implicit Neural Representations (INRs) in signal

compression.

INRs are particularly well-suited to describe data that lives on an underlying grid.
These are able to capture complex patterns and connections between the data without
the need for explicit parameterization of the grid structure. Specifically, INRs learn a
mapping between the grid coordinates and the related data values (e.g., a mapping be-
tween pixel location to its spectrum) [Striimpler et al., 2022]. Mathematically, consider
a hyperspectral image I € R"™wxc where h, w, and ¢ denote the height, width, and the
number of channels, respectively. The goal is to learn a function fg : (x,y) — I[x,y],
where (x,y) denote pixel coordinates and I [x, y] € R® denotes the pixel spectrum. ©,
which serves as an encoding for the image I, denotes the function parameters. The

original image can be reconstructed given ® by evaluating fe at [1, k] x [1, w].

This thesis presents the first comprehensive study that explores the use of Im-
plicit Neural Representations for hyperspectral image compression. While INRs have
been previously applied to natural images, their potential in the context of high-
dimensional spectral data has remained largely unexplored. This thesis not only
demonstrates the feasibility of using INRs for encoding and reconstructing hyperspec-
tral images, but also provides a systematic analysis of their performance under vary-
ing compression constraints. The proposed method introduces a novel perspective on
hyperspectral image compression, positioning INRs as a viable and efficient alterna-
tive to both traditional and learning-based approaches. By leveraging the continuous
nature of coordinate-based mappings, the method enables high-quality reconstruction
from compact model parameters, significantly reducing the storage and transmission

burden associated with hyperspectral data.

These contributions provide a comprehensive framework for hyperspectral image
compression, addressing key challenges such as encoding efficiency, spectral fidelity,

and task-aware optimization. By leveraging implicit neural representations, meta-
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learning, and adaptive compression strategies, this work offers practical and scal-
able solutions for reducing hyperspectral data volume while maintaining high recon-
struction quality. The proposed approaches are evaluated across multiple benchmark
datasets, demonstrating their effectiveness compared to conventional and learning-
based methods. The following sections delve deeper into the theoretical foundations

and practical benefits of using INRs for hyperspectral image compression.

1.4.1 Benefits of Using INRs

Using INRs to encode hyperspectral images offers the following advantages. (1) Flex-
ibility: Implicit neural representations can accurately represent complex and irregular
grids or surfaces. Contrary to explicit grid-based representations, which require the
explicit definition of the grid structure, implicit representations can adjust to the data
without imposing strict grid limitations. (2) Generalization ability: Implicit neural
representations exhibit strong generalization capabilities to previously unknown data
items. They have the ability to catch complex patterns in the data, enabling extrapo-
lation beyond the recorded grid points. This is especially advantageous when work-
ing with data that is sparsely or irregularly collected. (3) Computational efficiency
and scalability: Implicit representations can offer computational efficiency, particu-
larly when dealing with high-dimensional data or huge grids. Instead of explicitly
storing or computing values for each grid point, they can generate values on demand
by evaluating neural networks. Additionally, implicit representations provide excel-
lent scalability in high-dimensional spaces. The complexity of explicit grid-based ap-
proaches frequently increases dramatically as the dimensionality of the underlying
grid increases. On the other hand, implicit representations are capable of properly
managing data with a large number of dimensions. (4) Smoothness and continuity as-
sumptions: Implicit neural representations have the ability to depict smooth and un-

interrupted changes in the data accurately. Describing phenomena that demonstrate
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progressive variations throughout the grid is advantageous because neural networks
naturally smooth out the representations they learn. Lastly, (5) learnable representa-
tions: Implicit representations can be learned directly from data. Neural networks can
be trained using optimization approaches to accurately capture the underlying pat-
terns in the grid-based data, enabling the identification of intricate relationships and
features. In summary, implicit neural representations offer a powerful framework
for encoding grid-based data, providing flexibility, strong generalization capabilities,
computational efficiency, scalability, and the ability to capture smooth and continuous

variations in the data.

1.4.2 Contribution 1: HSI Compression using INR

In Chapter 4, we investigate the use of INRs for hyperspectral image compression and
show that it is possible to achieve high rates of compression while maintaining ac-
ceptable Peak Signal-to-Noise Ratio (PSNR) values. Figure 1.4 provides an overview
of the proposed compression and decompression pipeline. We evaluate the proposed
approach on four benchmarks (1) Indian Pines, (2) Jasper Ridge, (3) Pavia University,
and (4) Cuprite—and show that at comparable bits-per-pixel-per-band values, our
method achieves better PSNR values than those posted by three popular hyperspec-
tral image compression schemes—(1) JPEG [Good et al., 1994, Qiao et al., 2014], (2)
JPEG2000 [Du and Fowler, 2007], and (3) PCA-DCT [Nian et al., 2016]—at comparable
bits-per-pixel-per-band values. The results confirm that our method achieves better
PSNRs at low compression rates than those obtained by other methods.

Additionally, in the second part of this Chapter 4, we propose a sampling tech-
nique to speed up the encoding process and show that sampling achieves faster com-
pression times while achieving PSNR values similar to those obtained when the im-
age is encoded without sampling. In this part, We again evaluate the proposed ap-

proach on four benchmarks (1) Indian Pines, (2) Jasper Ridge, (3) Pavia University,
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and (4) Cuprite. Specifically, we evaluate the proposed approach against (1) JPEG,
(2) JPEG2000, (3) PCA-DCT, (4) PCA-JPEG2000 [Kwan and Larkin, 2019, Kwan et al.,
2019b, Kwan et al., 2019a] (5) MPEG [Le Gall, 1991], (6) X264 [Kwan and Larkin,
2019, Kwan et al., 2019b, Kwan et al., 2019a], (7) X265 [Kwan and Larkin, 2019, Kwan
et al., 2019b, Kwan et al., 2019a], (8) PCA-X264 [Kwan and Larkin, 2019, Kwan et al.,
2019b, Kwan et al., 2019a], (9) PCA-X265 [Kwan and Larkin, 2019, Kwan et al., 2019b,
Kwan et al., 2019a], (10) FPCA-JPEG2000 [Mei et al., 2018], (11) 3D-DCT [Yadav and
Nagmode, 2018], (12) 3D-DWT-SVR [Zikiou et al., 2020], (13) WSRC [Ouahioune et al.,
2021], (14) HEVC [Sullivan et al., 2012], (15) RPM [Paul et al., 2016], and (16) 3D-
SPECK [Ngadiran et al., 2010]. This list includes both the so-called classical approaches

and the more recent learning-based methods.

1.4.3 Contribution 2: Meta-Learned Based Network

In another study in Chapter 5, Hyperspectral Image Compression using Implicit Neu-
ral Representation and Meta-Learned Based Network, we recognize and resolve a
number of issues with our previous work [Rezasoltani and Qureshi, 2023a, Reza-
soltani and Qureshi, 2023b] and develop and implement an approach for hyperspec-
tral neural compression. More precisely, we address the following problems with
the previous work: 1. Encoding is time-consuming: it can take an hour or more to
compress a hyperspectral image, depending on the image size; 2. It does not exploit
the shared structure: since each hyperspectral image is compressed separately, net-
works do not share any information between themselves. We deal with these prob-
lems by: 1. Reducing encoding time by more than two orders of magnitude through
meta-learning, 2. Utilizing a base network to encode shared structures across images,
applying modulations to adapt it to specific image data. A visual overview of the
proposed method, showing how the parameters of the neural networks are stored as

compressed images, is provided in Figure 1.5. Figure 1.6 also provides an overview of
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Figure 1.5: The proposed method represents hyperspectral images using implicit neu-
ral representations, where a neural network learns a function that maps image co-
ordinates to pixel values. Instead of storing the full network weights, our approach
compresses the image by recording a set of modulations applied to a meta-learned
base network, resulting in a highly efficient and compact representation.

the proposed compression pipeline.

We assess the suggested methodology using four benchmarks. Our solution out-
performs nine prominent hyperspectral image compression algorithms in terms of
Peak Signal-to-Noise Ratio (PSNR) values for the Indian Pines, Jasper Ridge, Pavia
University, and Cuprite datasets. Image compression techniques, namely JPEG, JPEG2000,
PCA-DCT, MPEG, X264, X265, PCA-X264, PCA-X265, and PCA-JPEG2000 methods
are compared in terms of their bits-per-pixel-per-band (bpppb) values.

In this study in Chapter 5, we also use a substantial dataset to evaluate the efficacy
of our proposed meta-learned compression technique. This dataset, totaling 28.2 GB
with dimensions of 4192 by 6708 pixels across 270 channels, allows us to rigorously
test the scalability and effectiveness of our method in handling high-dimensional data.
To effectively manage the complexity inherent in such large images, we implement a
novel approach by partitioning each image into 7 by 7 grids, with dedicated networks
to compress each row based on its unique properties. This design not only facilitates
progressive compression but also ensures that image quality is preserved through-
out the compression process. Our comparative analysis against existing methods, in-
cluding JPEG and MPEG, highlights the competitive performance of our approach, as
evidenced by the achieved Peak Signal-to-Noise Ratio (PSNR) and significant reduc-
tions in bits per pixel per band (bpppb). Ultimately, the flexibility and adaptability of
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Figure 1.6: The compression pipeline used in the proposed method. The process be-
gins by initializing the base network and modulations. Modulations are added and
updated through inner loops, with loss calculation guiding the training process. The
network weights are updated through outer loop iterations, resulting in a trained base
network and modulations for efficient compression.
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our meta-learned method make it a powerful tool for image compression, capable of

accommodating various image sizes while delivering efficient compression outcomes.

1.4.4 Contribution 3: Differential Compression

In our final study, Chapter 6, we propose a task-aware hyperspectral image com-
pression technique aimed at optimizing the balance between data reduction and the
preservation of task-critical areas. The method utilizes the concept of region of in-
terest (ROI) to prioritize compression, ensuring high fidelity in critical areas for tasks
like classification or segmentation while applying more aggressive compression to
non-essential regions to significantly reduce storage size.

Our method for task-aware hyperspectral image compression is illustrated in Fig-
ure 1.7. The method is divided into two main stages: object segmentation and task-
aware compression. In the segmentation stage, K-means clustering is used in one part
of the project, and a deep learning-based method is used in another part of it to iden-
tify regions of interest (ROI) based on the task requirements. Once the hyperspectral
image is segmented, the compression stage is applied selectively. The segmented re-
gion undergoes a more detailed compression to preserve the critical spectral informa-
tion, while the background regions are compressed using less strict criteria, focusing
on minimizing the bitstream size.

The experimental results, showcased across five benchmark hyperspectral datasets,
Indian Pines, Jasper Ridge, Pavia University, Cuprite, and a big dataset, exhibit the ef-
ticacy of the suggested methodology. The PSNR values in the area of interest indicate
that the quality of task-sensitive regions is maintained, whilst the PSNR for the whole
image demonstrates a satisfactory balance between global quality and compression
efficiency. The bits per pixel per band (bpppb) and compressed image sizes exhibit
substantial decreases in data volume, hence reinforcing the method’s feasibility for

practical applications when storage or transmission capacity is constrained.
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Figure 1.7: Overview of the proposed task-aware hyperspectral image compression
method. The approach consists of two stages: segmentation and selective compres-
sion. In the segmentation stage, K-means clustering is used to identify regions of
interest (ROI) based on the task requirements. During the compression stage, the
segmented regions are compressed with higher fidelity to preserve critical spectral
information, while background areas are compressed with less stringent criteria to
optimize overall compression efficiency.

Task-aware hyperspectral image compression strategy is especially advantageous
in situations where accurate task performance is prioritized over preserving overall
image quality, as seen in remote sensing, video compression for streaming services,
and hyperspectral analysis for object detection.

The findings demonstrate that the task-aware technique is an efficacious method
for hyperspectral image compression, providing a compromise between elevated com-
pression ratios and the retention of essential image information. This approach pos-

sesses significant potential for applications that necessitate quick storage and transfer

while maintaining the requisite quality for subsequent activities.

1.5 Conclusion

In conclusion, this thesis makes the following key contributions to the field of hyper-

spectral image compression and analysis:

¢ Development of a novel hyperspectral image compression technique using Im-
plicit Neural Representations (INRs): We propose an approach for hyperspectral
image compression using implicit neural representations, where the data is com-

pressed by learning a function that maps spatial coordinates to spectral values.
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This method demonstrates a significant reduction in data size while maintaining

competitive PSNR values.

* Proposal of a sampling-based hyperspectral image compression method: We
propose a sampling technique that accelerates the encoding process while main-
taining compression performance to address the challenge of long encoding times
in hyperspectral image compression. This technique applies differential sam-
pling rates to different regions of the image, allowing faster encoding with min-

imal impact on image quality.

* Meta-learning-based approach for hyperspectral image compression: We ad-
dress the limitations of previous INR-based methods by introducing a meta-
learned base network that reduces encoding time by two orders of magnitude.
Our method uses a shared structure across images, which helps capture the com-
mon features of the dataset while adapting the model for image-specific infor-
mation using modulation techniques. Furthermore, we validate the scalability of
this approach by evaluating it on a large hyperspectral dataset, with a size of 28.2
GB and dimensions of 4192 by 6708 pixels across 270 channels, demonstrating

its effectiveness across various hyperspectral benchmarks.

* Introduction of region-aware compression: This study introduces the concept of
region-aware compression, where different parts of a hyperspectral image are
compressed at different sampling rates depending on their significance. The re-
sults show that this method preserves critical regions with higher fidelity while
reducing the overall data size, demonstrating its potential for real-world appli-

cations such as remote sensing and environmental monitoring.

¢ Introduction of task-aware hyperspectral image compression: We present a task-
aware compression method that prioritizes regions of interest (ROI) based on

the specific task at hand, such as classification or segmentation. This approach
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preserves the quality of task-critical areas while applying more aggressive com-
pression to less relevant regions, resulting in significant storage savings without

compromising task performance.

¢ Comprehensive evaluation and comparison against existing methods: The pro-
posed methods are evaluated on four benchmark datasets (Indian Pines, Jasper
Ridge, Pavia University, and Cuprite), and their performance is compared with
a wide range of existing compression techniques, including JPEG, JPEG2000,
PCA-DCT, PCA-JPEG2000, MPEG, X264, X265, PCA-X264, PCA-X265, FPCA-
JPEG2000, 3D-DCT, 3D-DWT-SVR, WSRC, HEVC, RPM, and 3D-SPECK. Our
methods consistently demonstrate superior performance in terms of compres-

sion efficiency and image quality.



Chapter 2

Research Landscape & Related Work

In this chapter, we discuss relevant literature to provide an overview of the hyperspec-
tral image analysis research landscape. First, we discuss computational techniques de-
veloped in the community for the purposes of analyzing hyperspectral images. Next,
we outline the challenges specific to capturing, processing, and managing hyperspec-
tral data. Lastly, we review methods and techniques for hyperspectral image compres-
sion. Together, this set of topics sets the stage for the work presented in the following

chapters.

2.1 Methods for Hyperspectral Image Analysis

Machine learning and deep learning techniques have become indispensable tools for
processing and analyzing hyperspectral images, offering solutions for a wide range
of applications. These methods are particularly effective in addressing the challenges
posed by the high dimensionality and complex spectral-spatial information in hyper-

spectral data.

21
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Figure 2.1: Research steps from the study “An Innovative Intelligent System with In-
tegrated CNN and SVM: Considering Various Crops through Hyperspectral Image
Data.” Adapted from [Wan et al., 2021].

2.1.1 Machine Learning Approaches

Traditional machine learning algorithms, such as Support Vector Machines (SVMs)
and Random Forests, have been widely used for hyperspectral image classification,
particularly in tasks like land cover mapping, agricultural monitoring, and urban area
classification. These methods leverage hand-crafted spectral and spatial features but
often struggle with high dimensional data and complex spectral relationships. For
instance, Wan et al. [Wan et al., 2021] applied an SVM model to classify crop types
in an agricultural region, achieving high accuracy by incorporating both spectral and

spatial features extracted manually.

The research plan was structured into five distinct steps, as illustrated in Figure 2.1:
(1) application of a support vector machine (SVM) prior to processing; (2) preparation
of materials for principal component analysis (PCA) attribute selection; (3) refinement
of detailed classification using a convolutional neural network (CNN); (4) establish-
ment of multi-classification criteria and hierarchical rules; (5) implementation of a

repair module to correct misclassification errors [Wan et al., 2021].
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Figure 2.2: Diagram depicting the 3D-CNN-based framework for hyperspectral im-
agery classification. Adapted from [Li et al., 2017].

2.1.2 Deep Learning Approaches

However, with the rise of deep learning, methods such as Convolutional Neural Net-
works (CNNs) have demonstrated superior performance by automatically learning
hierarchical features from hyperspectral images. Unlike traditional methods, CNNs
can effectively capture spectral-spatial correlations without the need for extensive fea-
ture engineering. In a study by Li et al. [Li et al., 2017], a 3D-CNN model was used
to analyze hyperspectral images for the classification of urban land cover. The model
achieved state-of-the-art accuracy by simultaneously processing spectral and spatial
information, outperforming traditional classifiers. To classify a pixel, the 3D-CNN
model extracts relevant features from the pixel. Figure 2.2 illustrates the computa-

tional process [Li et al., 2017].

2.1.2.1 Object Detection

Object detection in hyperspectral images is another application where deep learning
excels. For example, paper [Watanabe et al., 2019] implemented YOLO (You Only
Look Once) [Redmon, 2016], a real-time object detection algorithm, to detect and clas-
sify objects in marine environments based on hyperspectral data. This approach al-

lowed for the identification of different types of coral reefs and marine vegetation with
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high precision, even under challenging lighting conditions.

Figure 2.3 presents sample outcomes of underwater fish detection from video footage
captured during a scuba diving session. The model successfully identified various fish
species in different underwater conditions, including schools of mid-sized fish [Fig.
2.3(a)], small blue fish distinctly contrasted against rocky backgrounds [Fig. 2.3(b)],
and fish swimming in low-visibility waters [Fig. 2.3(c)]. The detected fish are high-
lighted with pink bounding boxes. Notably, the detection model demonstrated high
sensitivity by identifying small fish that might be challenging for human observers to
notice, such as those positioned at the far left in Fig. 2.3(a) and those swimming above

the rock formation in Fig. 2.3(c).

2.1.2.2 Anomaly Detection

Anomaly detection has also benefited from machine learning and deep learning tech-
niques. In hyperspectral imaging, detecting anomalies often involves identifying ma-
terials or objects that differ significantly from the background. Researchers like [Fan
etal., 2021] have employed Autoencoders for this purpose, where the network learns a
compressed representation of normal data and detects anomalies based on reconstruc-
tion errors. This approach has been used in applications such as detecting chemical
spills in environmental monitoring and identifying camouflaged objects in military

reconnaissance.

2.1.2.3 Geological Surveys

In the field of target detection, deep learning techniques like Recurrent Neural Net-
works (RNNs) and Long Short-Term Memory (LSTM) networks have shown promise
in hyperspectral imaging, especially for tasks involving sequential spectral informa-
tion. For instance, paper [Zhao et al., 2020] used an LSTM-based model for detecting

specific mineral deposits in geological surveys, leveraging the sequential dependen-
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Input images Detection results

Figure 2.3: Example detection results of (a) schools of mid-sized fish, (b) small blue fish
distinctly contrasted against the background, and (c) fish swimming in low-visibility
water. The input video was captured during a scuba diving session. Adapted from
[Watanabe et al., 2019].
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Figure 2.4: HSS-LSTM architecture for mineral identification using hyperspectral im-
agery. Adapted from [Zhao et al., 2020].

cies in hyperspectral data to improve detection accuracy.

2.1.2.4 Mineral Identification

Figure 2.4 illustrates the architecture of the HSS-LSTM model designed for mineral
identification using hyperspectral imagery. The proposed model consists of three pri-
mary steps. First, local spatial features are extracted using a CNN-based model com-
prising multiple convolutional layers, max pooling layers, and a fully connected layer.
Next, a fusion of spatial and spectral features is created by stacking the spectral infor-
mation of a pixel with its corresponding local spatial features. Finally, an LSTM-based
model is employed to extract deep hierarchical spatial-spectral features from the fused
representation, followed by a softmax layer to perform mineral identification [Zhao

et al., 2020].
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2.1.2.5 Super-resolution

Deep learning techniques have made significant contributions to super-resolution in
hyperspectral imaging. Super-resolution aims to enhance the spatial resolution of hy-
perspectral images by fusing information from different sources. For example, paper
[Huang et al., 2019] utilized a Generative Adversarial Network (GAN) for hyperspec-
tral image super-resolution, demonstrating improved spatial detail in remote sens-
ing applications. GANs have also been used to fuse hyperspectral data with high-
resolution multispectral images, resulting in sharper images with more detailed spec-

tral information.

2.1.2.6 Change Detection

Change detection is another application where machine learning and deep learning
techniques are commonly used. It involves identifying differences in a scene over
time, which is particularly useful in environmental monitoring, disaster assessment,
and urban development studies. Paper [Khan, 2022] employed a CNN-based Siamese
network to detect changes in vegetation health using time-series hyperspectral data,

enabling early detection of disease outbreaks in agricultural fields.

2.1.2.7 Spectral-Spatial Feature Extraction

Machine learning and deep learning have also found applications in spectral-spatial
feature extraction, where the goal is to exploit spectral and spatial information for
better analysis jointly. Techniques like Graph Convolutional Networks (GCNs) have
been applied to hyperspectral data to model the relationships between different re-
gions, improving classification performance by incorporating contextual information.
In paper [Hong et al., 2020], GCNs were used for classifying various land cover types
in a hyperspectral image of an urban area, achieving enhanced accuracy compared to

traditional methods. GCNs [Hong et al., 2020] have gained significant attention as an
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Convolutional Neural Networks (CNNs)

Figure 2.5: Comparison of CNN and GCN architectures for hyperspectral image clas-
sification. In the GCN framework, V, Z, H, S, and Y represent vertices, hidden repre-
sentations obtained from the GCN layer, hidden representations from the ReLU layer,
hidden representations from the softmax layer, and labels, respectively. Adapted from
[Hong et al., 2020].

emerging network architecture capable of effectively handling graph-structured data
by capturing relationships between samples (or vertices). Unlike Convolutional Neu-
ral Networks (CNNSs), which primarily focus on local spatial features, GCNs can nat-
urally model long-range spatial dependencies in hyperspectral images, as illustrated

in Figure 2.5 [Hong et al., 2020].

2.1.2.8 Data Augmentation

Data augmentation techniques powered by deep learning are increasingly being used
to enhance hyperspectral imaging datasets. Techniques such as adversarial training
and neural style transfer have been employed to artificially generate new training
samples, thus improving the robustness of machine learning models. For example,
paper [Nalepa et al., 2019] utilized adversarial training to generate realistic hyperspec-

tral samples for training a deep learning model, leading to improved generalization
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on real-world test data.

2.1.2.9 Fractional Abundance Estimation

Fractional Abundance Estimation techniques extend traditional unmixing approaches
by considering the uncertainties in abundance estimation. Methods like Bayesian Un-
mixing incorporate prior knowledge and probabilistic models to better estimate the
abundance of materials, especially in environments with high noise levels. For ex-
ample, paper [Duan et al., 2023] utilized Bayesian unmixing for monitoring oil spill
detection, achieving robust performance even when the hyperspectral data were af-

fected by significant background noise.

2.1.2.10 Spectral Unmixing

Spectral unmixing is a fundamental task in hyperspectral imaging that aims to decom-
pose the mixed spectral signal recorded at each pixel into a set of pure spectral compo-
nents (endmembers) and their corresponding proportions (abundances). Since real-
world scenes often contain mixed pixels, especially in remote sensing applications,
spectral unmixing is crucial for accurately identifying materials and understanding
their distribution.

Traditional methods rely on either blind source separation or physics-based mod-
els, which often struggle with spectral variability and require labeled data. The work
by Mantripragada and Qureshi [Mantripragada and Qureshi, 2024] introduces a data-
driven approach leveraging a Latent Dirichlet Variational Autoencoder (LDVAE) to
model abundance distributions. The proposed model assumes that abundance vec-
tors follow a Dirichlet distribution, ensuring the necessary non-negativity and sum-
to-one constraints, while endmembers are modeled as multivariate normal distribu-
tions. The LDVAE framework jointly performs endmember extraction and abundance

estimation within a probabilistic deep learning paradigm. Notably, the model demon-
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strates strong generalization capabilities through a transfer learning paradigm, where
it is pre-trained on synthetic data generated from the United States Geological Survey
(USGS) Spectral Library and then applied to real-world datasets like Cuprite, Urban
HYDICE, and Samson. Experimental results confirm that LDVAE achieves state-of-
the-art performance in spectral reconstruction, abundance estimation, and endmem-
ber extraction. The study highlights the model’s applicability to scenarios where la-
beled data is scarce and suggests future extensions incorporating spatial information

for improved hyperspectral unmixing [Mantripragada and Qureshi, 2024].

One popular spectral unmixing method is Linear Spectral Unmixing (LSU), which
assumes that the mixed spectral signature at a pixel is a linear combination of the end
member spectra. LSU has been widely used in applications such as mineral mapping
and soil analysis. For instance, paper [Kopackova and Hladikova, 2014] applied LSU
to hyperspectral data collected over a mining site to estimate the abundance of vari-
ous minerals, enabling geologists to assess ore quality and distribution effectively. The
general processing framework is illustrated in Figure 2.6, where image endmembers
are extracted from "water-only" pixels and subsequently utilized for further image
analysis. To identify these pure spectral signatures, a methodology combining Mini-
mum Noise Fraction (MNF) transformation [Joseph, 1994, Green et al., 1988] and Pixel
Purity Index (PPI) [Boardman, 1995] was applied. This approach involves spectral and
spatial dimensionality reduction to isolate spectrally distinct endmembers, assumed
to represent the purest pixels within the dataset. Scatterplots of MNF-transformed
bands were analyzed to examine data distribution within the feature space and inves-
tigate spectral mixing patterns. Spectral endmembers were then identified through
scatterplot analysis across various MNF band combinations, following methodolo-
gies similar to those in [Adams, 1993, Rainey et al., 2003]. The identified endmembers
were mapped back to their corresponding image pixels, facilitating further analysis.

This processing technique is particularly useful for hyperspectral water analysis, en-
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Figure 2.6: Processing workflow for HyMap image reflectance data and its resampled
version at WV2 spectral resolution. Adapted from [Kopackova and Hladikova, 2014].

abling the characterization of different water types based on their unique chemical
compositions and physical properties.

Paper [Ren et al., 2022] applied NMF to hyperspectral data from a mining site to
unmix different minerals, providing insights into the composition of the ore deposits.
Sparse Autoencoders have also been employed to improve the unmixing results by
learning a compact representation of the spectral signatures.

Another widely used approach is Nonlinear Spectral Unmixing, which accounts
for the complex interactions between materials, especially in cases where light scatter-
ing and other nonlinear effects are significant. Nonlinear unmixing models, such as
Kernel-based methods and Artificial Neural Networks (ANNSs), have been employed
in fields like agricultural monitoring. For example, paper [Yang and Wang, 2018] uti-

lized a kernel-based nonlinear unmixing method to detect the abundance of different
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crop types in agricultural fields, improving the estimation accuracy of mixed pixels
compared to linear models. Sparse Unmixing techniques exploit the sparsity of hy-
perspectral data by assuming that only a few endmembers are active within a given
pixel. This approach has been used effectively in applications such as urban land
cover classification, where the number of materials in a single pixel is limited. For in-
stance, paper [Zhang et al., 2016] applied Sparse Regression Unmixing to hyperspec-
tral data of an urban area, identifying materials like concrete, asphalt, and vegetation

with higher precision.

Another advanced spectral unmixing technique is Blind Source Separation (BSS),
where both the endmembers and their abundances are unknown and need to be esti-
mated directly from the data. Methods like Independent Component Analysis (ICA)
and Non-negative Matrix Factorization (NMF) are commonly used for BSS. In a study
by [Feretb et al.,, 2019], NMF was applied to hyperspectral images of a coral reef
to separate different underwater species and substrates, providing insights into the
reef’s biodiversity and health. Incorporating spatial information can significantly im-
prove unmixing performance, leading to the development of Spectral-Spatial Unmix-
ing techniques. These methods combine spectral unmixing with spatial regularization
or segmentation to exploit the spatial continuity of end members. For example, [We-
likanna, 2008] proposed a Markov Random Field (MRF)-based approach that uses
spatial constraints during the unmixing process to improve the abundance estimation
of materials in an urban setting, reducing noise and enhancing the detection of small

features.

Deep learning has also made significant inroads in spectral unmixing, with tech-
niques like Autoencoders and Convolutional Neural Networks (CNNs) being applied
for Deep Unmixing. For instance, paper [Sellami and Tabbone, 2022] used a Deep Au-
toencoder Network to learn a low-dimensional representation of hyperspectral data,

which facilitated the extraction of endmembers and their corresponding abundances.
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This approach was used in a study of forest canopy monitoring, where it provided
more accurate estimates of different tree species than traditional unmixing methods.
Collaborative Unmixing is another advanced technique that uses information from
multiple related hyperspectral images to improve unmixing accuracy. This approach
is particularly useful in applications such as change detection and multi-temporal
analysis. Paper [Rizkinia and Okuda, 2017] employed a Joint Sparse Unmixing tech-
nique to analyze hyperspectral images collected over a period of time in a mining
area, effectively identifying changes in mineral composition caused by excavation ac-

tivities.

2.2 Challenges

Despite its numerous advantages, hyperspectral imaging (HSI) has several challenges

that limit its widespread adoption and practical implementation.

2.2.1 Data Volume & Computational Complexity

One of the most significant challenges in hyperspectral imaging (HSI) is the sheer
volume of data generated. Unlike traditional imaging systems, which store only a
tew values (e.g., RGB) for each pixel, HSI collects hundreds of spectral bands per
pixel, resulting in a hyperspectral data cube that is both high-dimensional and large
in size. For instance, even a small hyperspectral image with modest spatial resolution
can contain gigabytes of data, while large-scale remote sensing datasets captured by
satellites can easily reach terabytes or petabytes. This data explosion not only imposes
high demands on storage capacity but also presents unique challenges in terms of data
management and processing [Nhaila et al., 2014].

The complexity of hyperspectral data lies in its multidimensional nature, where

each pixel represents a point in both spatial and spectral space. This makes pro-
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cessing and analyzing the data computationally intensive. Traditional image pro-
cessing techniques may face challenges when applied to hyperspectral datasets due
to the high dimensionality and spectral dependencies. Specialized algorithms and
tools—such as dimensionality reduction methods, machine learning, and deep learn-
ing models—are required to extract meaningful insights while preserving spectral in-
tegrity. However, these algorithms demand significant computational resources such
as high-performance GPUs or cloud-based infrastructure, adding further cost and

complexity [Li et al., 2022].

2.2.2 Real-Time Processing & Latency Issues

Real-time processing is especially challenging. In applications like precision agricul-
ture, autonomous navigation, and environmental monitoring, timely insights are es-
sential. However, processing the entire hyperspectral data cube in real time is difficult
due to the need to analyze hundreds of bands for each pixel. Without optimized al-
gorithms and efficient data pipelines, the latency in data analysis can hinder decision-
making and reduce the utility of the system [Ad&o et al., 2017].

Moreover, storage solutions must accommodate not only the volume of raw data
but also the processed outputs, intermediate results, and metadata. Efficient data com-
pression techniques—both lossless and lossy—are essential to reduce the storage bur-
den while retaining critical information. However, hyperspectral data compression
itself is a research challenge, as preserving the spectral and spatial relationships dur-

ing compression is non-trivial.

2.2.3 High-Cost of Hyperspectral Sensors

Another significant challenge in hyperspectral imaging lies in the high cost of the sen-
sors and systems, which limits their accessibility for smaller industries, research labs,

and individual users. Hyperspectral sensors are complex instruments that require pre-
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cise components, including optical systems, diffraction gratings, filters, and detectors
capable of capturing hundreds of narrow spectral bands with high sensitivity.

The cost of these specialized sensors can run into tens of thousands to hundreds of
thousands of dollars, making them suitable primarily for large-scale research projects,
government initiatives, or well-funded industries such as space exploration, defense,
and precision agriculture. Additionally, the operational costs—including maintenance,
calibration, data storage, and the expertise required to interpret the data—further
increase the financial burden. This high price point hinders wider adoption of HSI
technology, especially in small-scale industries, startups, and developing regions [Al-

Hourani et al., 2023].

2.2.4 Sensor Calibration & Standardization

Precise calibration is essential for hyperspectral imaging systems to produce accu-
rate, reliable, and reproducible results. Each sensor needs to be carefully calibrated to
account for sensor-specific distortions, such as variations in sensitivity across wave-
lengths, pixel-to-pixel inconsistencies, and optical misalignments. Calibration involves
using standardized light sources and reference materials to ensure that the spectral
data accurately reflects real-world conditions. Any deviation in calibration can in-
troduce artifacts or errors in the collected data, reducing the reliability of material
identification or classification tasks. Maintaining calibration across multiple sensors
or over extended periods also requires expertise and specialized equipment, which

adds to the operational complexity and costs [Cruz-Guerrero et al., 2022].

2.2.5 Sensor Sensitivity to Environmental Conditions

The data acquisition process in HSI is highly sensitive to environmental conditions,
which can degrade data quality if not properly managed. Lighting conditions, for

example, play a crucial role in ensuring consistent and meaningful spectral measure-
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ments. Changes in illumination—whether from shadows, cloud cover, or artificial
lighting variations—can alter the reflectance properties of objects, leading to inaccu-
rate spectral signatures. This makes outdoor applications, such as remote sensing or
agriculture, particularly challenging, as the imaging system must be carefully syn-
chronized with natural light conditions or employ sophisticated algorithms to correct

for illumination variability.

Atmospheric interference is another factor that can introduce noise in the data,
especially for airborne and satellite-based HSI systems. Water vapor, dust, and other
atmospheric particles can absorb or scatter specific wavelengths, affecting the integrity
of the spectral data. Atmospheric correction algorithms are often required to mitigate
these effects, but developing and applying these corrections can be computationally

demanding and prone to errors [Katkovsky et al., 2018].

Movement during data acquisition is also a concern, especially when using hyper-
spectral sensors mounted on drones, satellites, or vehicles. Motion artifacts, misalign-
ments, or vibrations can introduce spatial distortions or blurring in the hyperspec-
tral data cube. In high-speed applications—such as drones surveying agricultural
tields—specialized sensors with stabilization mechanisms or advanced image align-

ment algorithms are needed to compensate for motion-related errors.

These environmental challenges demand careful planning during data collection,
including the use of standardized acquisition protocols, environmental sensors, and
real-time corrections. However, this increases the complexity of operating HSI sys-
tems, making it more challenging for industries or researchers who lack the necessary
technical expertise [Katkovsky et al., 2018]. The combination of high costs, calibra-
tion requirements, and sensitivity to environmental factors makes HSI systems less
accessible for small businesses, startups, and individual researchers. This is a signif-
icant barrier to adoption in industries where profit margins are narrow or where the

need for spectral imaging is occasional rather than continuous. Additionally, indus-
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tries or academic institutions in developing regions may find it difficult to invest in
hyperspectral technology due to budget constraints.

Efforts to overcome these challenges include the development of more affordable
and portable hyperspectral sensors, such as miniaturized sensors for drones or smart-
phones. Advances in Al-driven calibration and correction algorithms are also help-
ing to reduce the need for manual intervention, making the technology more user-
friendly. Nevertheless, cost reduction, robust calibration solutions, and automated
environmental correction tools remain key areas of research to enable broader adop-

tion of HSI technology [Adao et al., 2017].

2.2.6 Visualization & Interpretation of Hyperspectral Data

Interpreting hyperspectral data is inherently challenging and labor-intensive due to
the large volume of high-dimensional information it contains. Each pixel in a hy-
perspectral image carries a complete spectral signature, resulting in datasets that are
significantly more complex than those from traditional imaging systems. As a result,
extracting meaningful insights from hyperspectral data requires advanced techniques
in data analysis, machine learning, signal processing, and domain-specific knowledge.
Simply visualizing the data cube or identifying patterns using conventional tools is in-
sufficient, making hyperspectral data analysis a specialized field with a steep learning

curve [Vali et al., 2024].

2.2.6.1 Curse of Dimensionality

A typical hyperspectral data cube contains hundreds of spectral bands, resulting in
a dataset with high dimensionality. While this abundance of information allows for
precise material identification, it also introduces the curse of dimensionality, a phe-
nomenon where the increased number of features (spectral bands) complicates data

analysis. As the dimensionality grows, it becomes more difficult to identify meaning-
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ful patterns, increasing the risk of overfitting in machine learning models and mak-
ing it challenging to design effective algorithms for classification, segmentation, or

anomaly detection.

2.2.6.2 Dimensionality Reduction

One common approach to dimensionality reduction in hyperspectral imaging is Prin-
cipal Component Analysis (PCA). PCA has been widely used for dimensionality re-
duction in hyperspectral image processing due to its ability to capture the most sig-

nificant spectral variations while reducing data redundancy.

In paper [Mantripragada et al., 2022], Mantripragada et al. explore PCA’s effective-
ness in hyperspectral image compression, leveraging its strong energy compaction
properties to reduce spectral dimensionality before applying advanced implicit neural
representation (INR) models. The study highlights how PCA can serve as a prepro-
cessing step to enhance the efficiency of INR-based compression by reducing input
dimensionality while preserving essential spectral features. Additionally, the work
demonstrates that by combining PCA with neural representations, hyperspectral im-
age compression can achieve improved performance in terms of reconstruction ac-
curacy and storage efficiency. The findings underscore the relevance of hybrid ap-
proaches that integrate traditional statistical techniques like PCA with modern deep

learning-based methods for optimizing hyperspectral data compression and analysis.

In another paper [Tsai et al., 2007], authors applied PCA to hyperspectral data for
vegetation classification, achieving significant data compression while maintaining
the accuracy of the classification. However, PCA’s linear nature may not capture com-
plex nonlinear relationships in the data, prompting the use of alternative techniques.
The process of spectrally segmented PCA for plant target detection is divided into

multiple phases, as depicted in Figure 2.7 [Tsai et al., 2007].



CHAPTER 2. RESEARCH LANDSCAPE & RELATED WORK 39

==

> /Z ?—yj % -
£ % |Preprocessing )
Z——% IMasking of : : > :% — >
Z——% |non-vegetation : : :
fEeas Feature

Segmentation PCA collection Classification

N=NR—1

Figure 2.7: Overall workflow of spectrally segmented PCA. Adapted from [Tsai et al.,
2007].

2.2.6.3 Independent Component Analysis (ICA)

Another effective method is Independent Component Analysis (ICA), which sepa-
rates mixed signals into statistically independent components. Researchers like [Zhao
et al., 2012] have utilized ICA for anomaly detection in hyperspectral images, such as
identifying hidden objects in military applications or detecting geological features in
remote sensing. ICA’s ability to isolate independent sources from complex data allows

for enhanced interpretation of hyperspectral images.

2.2.6.4 Nonlinear Dimensionality Reduction Techniques

Nonlinear dimensionality reduction techniques, such as t-distributed Stochastic Neigh-
bor Embedding (t-SNE) and Isometric Mapping (Isomap), have also been explored.
For instance, [Zhang et al., 2018] applied t-SNE to reduce the dimensionality of hyper-
spectral data from airborne sensors, facilitating the visualization of high-dimensional
data clusters associated with different land cover types. Similarly, Isomap has been
used to enhance feature extraction for mineral mapping in geological studies by cap-

turing the manifold structure of hyperspectral data.
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2.2.6.5 Autoencoders for Dimensionality Reduction

Autoencoders, a type of neural network, are increasingly popular for dimensionality
reduction in hyperspectral imaging. These networks learn a compressed representa-
tion of the data through a bottleneck layer. For example, paper [Guerri et al., 2024]
implemented a deep autoencoder to reduce the dimensionality of hyperspectral im-
ages in agricultural monitoring, allowing for the detection of plant stress with fewer
spectral bands. The reconstruction quality of autoencoders ensures that important
features are retained even after significant data compression.

A recent approach involves Variational Autoencoders (VAEs) and Generative Ad-
versarial Networks (GANSs). Researchers such as [Chamain et al., 2022] have em-
ployed VAEs to compress hyperspectral data while simultaneously performing image
restoration, showing that this technique can reduce noise and improve image quality.
GANSs have been explored for hyperspectral image super-resolution and denoising,
with dimensionality reduction being a natural by-product of the generative modeling
process.

Traditional classification approaches typically involve reconstructing images at the
decoder before performing inference, as illustrated in Fig. 2.8(a) [Chamain et al,,
2022]. However, this reconstruction step can introduce inefficiencies, particularly in
cloud-based Al applications. Two key observations highlight these limitations. First,
classification accuracy tends to degrade at high compression ratios when images are
compressed using codecs optimized for rate-distortion performance, which is primar-
ily designed for visualization rather than classification tasks [Chamain et al., 2022].
Second, performing inference on images compressed with standard codecs, such as
JPEG2000, often reduces inference speed and accuracy compared to end-to-end joint
classification and compression frameworks that bypass explicit image reconstruction
[Chamain et al., 2022]. To address these challenges, the proposed VAE-based classifi-

cation approach eliminates the reconstruction step, enabling direct classification from
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Figure 2.8: (a) VAE-based reconstruction before classification: The encoder maps the
input image x to a low-dimensional latent representation z, from which the decoder
reconstructs the image £. (b) Proposed joint compression and classification: Instead
of reconstructing the image, the classifier directly predicts the class label y from the
latent representation z. Adapted from [Chamain et al., 2022].

the latent representation. This method naturally supports end-to-end optimization for

improved rate-accuracy performance, as shown in Fig. 2.8(b).

2.2.6.6 Sparse Coding for Hyperspectral Analysis

Sparse coding is another effective strategy, where hyperspectral images are repre-
sented as a linear combination of a few basis functions. This technique has been ap-
plied to target detection in hyperspectral data. For example, paper [Yousefi et al.,
2018] utilized sparse coding to detect specific minerals in airborne hyperspectral sur-

veys, achieving accurate identification with a reduced number of spectral features.

2.2.6.7 Manifold Learning for Dimensionality Reduction

Furthermore, dimensionality reduction can be achieved using Manifold Learning,
where the focus is on finding a lower-dimensional representation that preserves the in-

trinsic geometry of the data. In hyperspectral imaging, manifold learning techniques
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such as Locally Linear Embedding (LLE) have been applied to tasks like urban area
classification and anomaly detection. Studies by [Iliopoulos et al., 2015] demonstrated
that LLE effectively uncovers the underlying structure in high-dimensional hyper-
spectral data, leading to improved classification performance. In summary, while di-
mensionality reduction techniques address the challenges associated with processing
hyperspectral images, the choice of method often depends on the specific application

and the nature of the hyperspectral data.

2.3 Future Directions & Emerging Challenges in Hyper-
spectral Imaging

The body of work surrounding hyperspectral imaging (HSI) underscores the trans-
formative potential of this technology across a variety of disciplines, from remote
sensing, agriculture, and mineral exploration to medical diagnostics and industrial
quality control. HSI's ability to capture detailed spectral information from every pixel
in a scene offers unparalleled insights that conventional imaging technologies cannot
achieve. This potential is being realized through significant advancements in sensor
design, data processing algorithms, and machine learning techniques, which are en-
abling more efficient collection, analysis, and interpretation of hyperspectral data. As
the technology evolves, new applications are emerging, demonstrating the versatility
and power of HSI in addressing both scientific challenges and real-world problems.
One of the primary drivers of progress in the field is the development of more
advanced sensors that offer improved spatial, spectral, and temporal resolution. In-
novations such as miniaturized and low-cost sensors have expanded the accessibil-
ity of HSI, making it possible to deploy hyperspectral cameras on drones, satellites,
and mobile platforms for applications such as precision agriculture, environmental

monitoring, and autonomous navigation. Additionally, the integration of Al-driven
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data processing techniques is helping to overcome the challenges associated with the
high-dimensional nature of hyperspectral datasets, enabling efficient classification,
anomaly detection, and feature extraction.

However, the rapid growth of hyperspectral imaging is accompanied by several
technical and operational challenges. The large volumes of data generated by HSI
systems present storage and computational bottlenecks, requiring high-performance
computing infrastructure and advanced algorithms for real-time processing. More-
over, the interpretation of hyperspectral data remains complex and labor-intensive,
often requiring domain-specific expertise in fields like remote sensing, medical imag-
ing, and geoscience. Addressing these challenges is critical to expanding the utility
of HSI and ensuring that it can be effectively applied in diverse operational environ-

ments.

2.4 Hyperspectral Image Compression

Hyperspectral imaging has gained significant attention due to its ability to capture
rich spectral information across multiple bands, making it valuable for applications
in remote sensing, medical imaging, and industrial inspection. However, the high di-
mensionality and large data volumes associated with HSI present considerable chal-
lenges in terms of storage, transmission, and processing. To address these challenges,
various compression techniques have been explored, ranging from traditional coding-
based methods to modern machine learning-driven approaches.

Compression algorithms are used to compress digital image data, and they can also
be applied to text and audio files. These algorithms generate an encoded representa-
tion using the minimum number of bits, allowing for transmission and reconstruction

at the destination with minimal data loss.

Compression is a fundamental technique used to reduce the size of digital data



CHAPTER 2. RESEARCH LANDSCAPE & RELATED WORK 44

while preserving its essential information. As digital data grows exponentially in size
and complexity, efficient compression methods have become critical for various appli-
cations, including storage, transmission, and real-time processing. Whether in cloud
storage, streaming services, or embedded systems with limited memory, compression
helps optimize resource utilization by eliminating redundant or non-essential data.
The effectiveness of compression is measured by the trade-off between the compres-
sion ratio (how much the data size is reduced) and the quality of reconstruction after
decompression. In many cases, compression improves data efficiency and enhances
transmission speed, making it essential for bandwidth-limited environments such as

satellite communication and mobile networks.

Compression techniques can be broadly classified based on whether they retain all
the original information after decompression. Some methods aim to provide exact re-
construction, ensuring that no information is lost, while others prioritize higher com-
pression ratios at the cost of some data fidelity. The choice of compression technique
depends on the specific requirements of the application—whether accuracy, speed,
or compact storage is the primary concern. Beyond conventional coding-based ap-
proaches, modern compression strategies leverage advanced signal processing and
machine learning techniques to optimize data representation. For instance, sparse
coding, transform-based methods, and deep learning models have introduced new
paradigms for compressing complex datasets, including images and videos. Given
these advancements, understanding the core principles of compression is essential for

effectively handling large-scale data in various domains.

Compression algorithms can be classified as lossless or lossy depending on the
quality of reconstruction sought. The image created at the end of the compression
process in lossless compression algorithms should be an exact duplicate of the original
image. Lossless algorithms aim to send visual data without losing any information.

Only a small amount of compression is achievable due to this restriction. Character
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data, numerical data, icons, and executable components are all compressed using non-
lossy compression. Lossy algorithms, on the other hand, are based on the assumption
that it is not required to transmit the complete image file because not all sections of the
image are important. Extraneous or inconsequential image elements, such as subtle
background noise, minor color variations, or imperceptible details in shadowed re-
gions, could be deleted without compromising the image’s visual effect. Furthermore,
because redundant data does not need to be communicated, it can be discarded en-
tirely. As a result, lossy compression methods offer a significant level of compression,
although at the expense of some information loss and image quality degradation. As

a result, lossy compression has been widely used to compress multimedia files.

2.4.1 History and Evolution of Image Compression Techniques

The early methods of image compression, such as Run-Length Encoding (RLE), Huff-
man coding, and Lempel-Ziv-Welch (LZW), laid the foundation for more complex
compression schemes [Birajdar et al., 2019, Moffat, 2019, Mishra et al., 2012]. RLE,
for instance, is a lossless compression technique that represents sequences of the same
data values as a single value and count, which works well for simple images like icons
or drawings but is not effective for complex photographic images. Similarly, Huffman
coding, introduced in the 1950s, uses variable-length codes based on the frequency
of occurrence of image symbols. While Huffman coding offers better efficiency than
RLE, its practical application is still limited to simplistic image structures.

With the advent of Discrete Cosine Transform (DCT) in the late 20th century, more
sophisticated compression algorithms such as JPEG were developed, enabling effi-
cient compression of photographic images [Khayam, 2003]. DCT transforms the image
into the frequency domain, allowing high-frequency components (which correspond
to less visible details) to be discarded, resulting in lossy compression. JPEG, based

on DCT, is still one of the most widely used lossy compression standards today due
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to its simplicity and efficiency. However, JPEG’s shortcomings, such as blocking ar-
tifacts, loss of fine details, and poor performance in preserving spectral integrity for
hyperspectral images, prompted the development of newer methods.

In the mid-1990s, wavelet-based compression emerged as a more advanced tech-
nique for image compression, leading to standards such as JPEG2000 [Walker and
Nguyen, 2001]. Unlike DCT, which divides images into blocks, wavelets allow for
the decomposition of the entire image in a hierarchical manner, capturing both spatial
and frequency information simultaneously. This method offers improved image qual-
ity, especially at lower bit rates, and is particularly useful for high-resolution images.

JPEG2000, the most popular wavelet-based image compression algorithm, intro-
duced progressive decoding, which allows images to be viewed with increasing qual-
ity as more data is transmitted. This method also supports both lossy and lossless
compression, making it flexible for various applications. However, despite its techni-
cal superiority, JPEG2000 has not been widely adopted in the consumer space due to

its computational complexity.

2.4.2 Compression Techniques for Hyperspectral Images

Compression is a technique that reduces the size of a hyperspectral image while en-
suring that its quality remains within an acceptable threshold. Hyperspectral images
have spectral and spatial redundancy, which must be exploited for compression. Spec-
tral redundancy occurs when consecutive spectral channels in a hyperspectral image
capture highly similar spatial information, leading to redundancy in the data, while
spatial redundancy is a redundancy relating to statistical relationships between pixel
locations. Hyperspectral images are known for their spectral redundancy [Dusselaar
and Paul, 2017]. The minimization of spatial redundancy has been the focus of stud-
ies in the past two decades. JPEG [Good et al., 1994], and JPEG2000 [Skodras et al.,

2001] are two of the most widely used image compression standards. Compression
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approaches targeted at removing spectral redundancy are continuously being investi-
gated. A desirable hyperspectral image compression solution must eliminate spatial
redundancy while also taking into account spectrum redundancy. The goal is to de-
crease the spatial and spectral correlations in order to produce the best compression
result possible. Hyperspectral image compression is a crucial step in hyperspectral
image processing, widely employed in space missions to optimize bandwidth usage

and reduce storage costs.

Hyperspectral data are equivalent to video data in that spectral band equates to
frame, but they have distinctive statistical properties: there is no movement among
hyperspectral planes, only color changes. To preserve the scientific value of data,
compression should preferably be lossless. On the other hand, lossless compression
algorithms yield compression ratios of roughly two or three, a constraint imposed in
minimizing data by the noise inherent in high-resolution sensors that create such data
[Christophe et al., 2008]. During sensor selection, near-lossless compression, where
the highest error between the source and unencrypted image is constrained to a user-

defined threshold, becomes an increasingly acceptable option.

Hyperspectral image compression algorithms are classified into several groups
based on their application. Lossy or lossless compression methods, inter-band or
intra-band compression methods, and compression methods based on various cod-

ing algorithms are among the subjects covered.

Various techniques for hyperspectral image compression research are currently ac-
cessible in the literature. As previously stated, a three-dimensional data structure
known as a hyperspectral image captures combined spatial and spectral data. The
hyperspectral image compression algorithms contain two key phases. Spectral decor-
relation is usually the first stage in hyperspectral image compression, and Inter-band
compression is what we call it. This step decreases the number of dimensions. The

elimination of spectral redundancy is a crucial milestone. The second phase is mostly
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concerned with different types of compression encoders. A 2D or 3D compression
encoder can be used. This is referred to as intra-band compression. In fact, both inter-
band and intra-band compression should be addressed. These two techniques can
sometimes be integrated into a single phase.

Some compression techniques vary in their coding algorithms; for example, some
employ Principal Component Analysis (PCA) for image compression, others use Tensor-
Based Compression, and others use the Differential Pulse Code Modulation Tech-
nique. Many compression methods use deep learning techniques, while others em-
ploy the Vector Quantization Transform or the Discrete Cosine Transform.

Hyperspectral image compression techniques can be broadly categorized into tra-
ditional transform-based methods, vector quantization techniques, predictive coding
methods, dictionary learning approaches, and deep learning-based strategies. Below,

we explore these categories in more detail.

24.21 Vector Quantization-Based Techniques

Vector Quantization (VQ) is a traditional approach used for compressing hyperspec-
tral images. It is effective in minimizing color distribution during compression by
representing the data using a finite set of codewords. Several methods have been de-
veloped to enhance the performance of VQ in hyperspectral image compression.

A multidimensional vector quantization method has been proposed to improve the
compression of hyperspectral images, where the Fuzzy C-Means (FCM) clustering al-
gorithm is employed to determine the optimal number of data clusters and codewords
for the codebook [Li et al., 2014]. However, constructing an appropriate codebook re-
mains challenging; for example, if the codebook is poorly designed, pixel intensities
may be inaccurately mapped, leading to quality degradation. Additionally, the com-
plexity involved in searching the codebook can slow down processing speed.

The Multidimensional Vector Quantization (MVQ) approach described by Li et al.
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offers greater flexibility by using fuzzy C-means clustering to optimize both the num-
ber of clusters and codewords in the codebook. This adaptive clustering helps capture
the inherent variability in hyperspectral data, ensuring more accurate compression
across diverse spectral bands. However, balancing codebook complexity with com-
putational efficiency remains a challenge. Larger or poorly optimized codebooks can
increase processing time and degrade image quality if pixel intensities are not mapped

accurately, emphasizing the need for careful codebook design and management.

To further optimize VQ-based methods, an adaptive VQ approach was introduced
to adjust the size of the codebook based on the local statistics of the image [Li et al.,
2023]. This technique dynamically updates the codebook as compression progresses,
which helps improve compression efficiency and reduces the distortion of reconstructed
images. However, the adaptive updating process increases the computational com-

plexity, making it less suitable for real-time applications.

In addition to enhancing compression efficiency, the adaptive Vector Quantization
(VQ) approach by Li et al. offers fine-grained control over image quality by adjusting
the codebook dynamically. This adaptive strategy ensures that high-detail regions
retain more information, improving the visual fidelity of the reconstructed image.
However, the frequent updates to the codebook can introduce latency, posing a chal-
lenge for systems with strict real-time processing needs. Future research could explore
ways to balance adaptability with computational efficiency, making it viable for time-

sensitive applications.

Another enhancement of VQ techniques involves the use of Classified Vector Quan-
tization (CVQ), where image data is divided into several classes based on spectral or
spatial properties before applying VQ to each class individually [Karayiannis and Pai,
1995]. This method helps preserve the spectral information by ensuring that simi-
lar spectral features are compressed together, which can lead to better quality in the

reconstructed images. CVQ further refines compression by organizing the data into
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clusters or classes based on spectral or spatial properties, allowing the quantization
process to cater specifically to each class’s characteristics. This targeted approach
not only enhances compression efficiency but also maintains critical patterns within
each group, such as material-specific spectral signatures, thereby minimizing artifacts.
However, the classification step adds overhead, and the method’s effectiveness de-
pends on the accuracy of class assignments, making it sensitive to misclassifications

or noisy input data [Karayiannis and Pai, 1995].

Moreover, Hierarchical Vector Quantization (HVQ) has been explored for hyper-
spectral data compression, where the image is divided into hierarchical levels, and a
separate codebook is constructed for each level [Bao et al., 2020]. The advantage of
HVQ lies in its ability to capture the multi-resolution characteristics of hyperspectral
images, which can result in higher compression ratios without significant loss of im-
age quality. However, managing multiple codebooks across hierarchical levels adds

complexity to the encoding and decoding processes.

HVQ enhances hyperspectral image compression by leveraging multiple resolu-
tion levels, with each level utilizing a distinct codebook to capture finer details pro-
gressively. This hierarchical structure allows HVQ to efficiently manage both spectral
and spatial redundancies, leading to improved compression ratios without significant
loss in visual or spectral fidelity. However, the need to maintain and synchronize
multiple codebooks at different levels introduces additional overhead, complicating
the encoding and decoding processes. Optimizing these processes is essential to fully

realize the benefits of HVQ in real-world applications [Bao et al., 2020].

Paper [Bascones et al., 2018] utilizes spectral decorrelation through vector quan-
tization combined with PCA to reduce the dimensionality of hyperspectral images
while maintaining essential spectral information. This paper combines spectral decor-
relation with vector quantization and PCA to efficiently compress hyperspectral im-

ages. PCA reduces the data’s dimensionality, focusing on preserving essential spec-
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tral features, while vector quantization further compresses the transformed data. This
dual approach enhances compression ratios and ensures that key spectral informa-
tion remains intact, supporting applications like material identification or classifica-
tion. However, the computational burden of applying PCA and vector quantization
together can increase processing times, posing challenges for real-time scenarios.

Similarly, Li et al. [Li et al., 2019] proposed a method that combines spectral clus-
tering, linear prediction, and vector quantization, improving compression efficiency
by reducing redundancy across spectral bands. This approach exploits inter-band cor-
relations more effectively, clustering spectrally similar components and applying lin-
ear prediction to reduce redundancy. Vector quantization is then used to compress
the residuals, ensuring minimal data loss. This method achieves a balance between
compression efficiency and preservation of spectral integrity, making it suitable for
applications that require both reduced storage and high data fidelity. However, the
interplay between clustering and prediction increases the algorithm’s computational
complexity.

These techniques illustrate the ongoing evolution of VQ-based methods for hyper-
spectral image compression, with research efforts focusing on overcoming limitations
such as codebook generation, computational complexity, and adaptability to different
hyperspectral datasets. Table 2.1 highlights the use of VQ-based techniques in hyper-

spectral image compression.

2.4.2.2 Transform-Based Techniques

These techniques aim to balance compression ratios and image quality by exploiting
the spatial, spectral, or both redundancies in hyperspectral images.

Wavelet-based compression methods are widely recognized for their effectiveness
in image compression. Techniques such as Embedded Zerotrees of Wavelet (EZW)

Transforms [Shingate et al., 2010, George and Manimekalai, 2014], Set Partitioning in
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Year | Paper Details Datasets
2014 | Novel multivariate vector quantiza- | Proposed a multidimensional VQ | AVIRIS
tion for effective compression of hy- | method to improve the compres-
perspectral imagery [Li et al., 2014] | sion of HSI, where the FCM clus-
tering algorithm determines the op-
timal number of clusters and code-
words.
2018 | Hyperspectral image compression | Spectrally decorrelates the image | SUW, Cuprite
using vector quantization, PCA, | using Vector Quantization and
and JPEG2000 [Bascones et al., | Principal Component Analysis
2018] (PCA).
2019 | The linear prediction vector quan- | Proposed a method based on spec- | AVIRIS
tization for hyperspectral image | tral clustering, linear prediction,
compression [Li et al., 2019] and vector quantization.
2019 | Multispectral transforms using con- | Uses CNNs to compress the HSL Not Mentioned
volution neural networks for re-
mote sensing multispectral image
compression [Li and Liu, 2019]

Table 2.1: Related Work on Vector Quantization-Based Techniques

Hierarchical Trees (SPIHT) [Zala and Parmar, 2013], and Set Partitioned Embedded
Block (SPECK) [Tang and Pearlman, 2006] have been explored extensively for hyper-
spectral image compression. Additionally, regression wavelet analysis has been pro-
posed as a predictive approach, further enhancing compression performance [Amrani
et al., 2016]. These techniques illustrate the versatility and effectiveness of wavelet-
based methods in compressing hyperspectral images by exploiting the multi-resolution
properties inherent to wavelet transforms.

The Embedded Zerotrees of Wavelet (EZW) technique is a well-known wavelet-
based compression method for images, including hyperspectral data. It works by en-
coding significant wavelet coefficients based on their hierarchical structure, allowing
for efficient compression. The EZW algorithm utilizes the concept of zero trees, which
exploits the hierarchical structure of wavelet coefficients across multiple resolutions.
The algorithm works by identifying areas of an image where coefficients are likely to
remain insignificant across scales, marking these as zero tree roots. This approach en-
sures that redundant coefficients are efficiently represented, reducing the size of the

encoded data stream [Shapiro, 1993b].
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One of EZW’s key advantages is its embedded bitstream, which allows the encoder
to terminate the compression process at any point and enables scalability and rate con-
trol. This makes EZW particularly valuable for applications where the available band-
width is limited, such as satellite imaging. Additionally, its progressive transmission
capability allows partial reconstruction of an image, improving quality incrementally
as more data becomes available. Unlike other compression algorithms, EZW does not
require pre-trained models or codebooks, further enhancing its versatility. Despite
these strengths, the algorithm can be computationally demanding due to its two-pass
process: a significance pass, which detects and encodes significant coefficients, and a
refinement pass, which improves the precision of already-encoded data. This dual-
pass structure enables high compression ratios while maintaining image quality, mak-

ing EZW suitable for both lossy and lossless compression scenarios.

Shingate et al. [Shingate et al., 2010] explored EZW for still image compression,
showing its potential for reducing data size without compromising quality. EZW
achieves this by efficiently encoding wavelet coefficients and exploiting the inherent
correlations within the image data. The algorithm progressively transmits the most
important information first, enabling scalable compression where decoding can be
stopped at any point to yield a reasonable approximation of the image. This makes it
particularly useful for applications with variable storage or bandwidth constraints.
George et al. [George and Manimekalai, 2014] further extended this approach to hy-
perspectral images, demonstrating its capability to exploit the intrinsic multiscale na-
ture of wavelets for better compression. George et al. extended the Embedded Ze-
rotree Wavelet (EZW) algorithm to hyperspectral images, leveraging wavelets” mul-
tiscale properties to enhance compression efficiency. This approach preserves essen-
tial spectral and spatial information by representing the data at multiple resolutions,
allowing critical features to be retained even at higher compression ratios. The use

of wavelet decomposition ensures that redundancies across both spectral bands and
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spatial dimensions are minimized, making the method effective for large-scale hyper-
spectral datasets.

Cheng et al. [Cheng et al., 2014] connected a study specifically tailored for hyperspec-
tral image compression. The research focuses on addressing some of the limitations of
the original EZW algorithm, such as handling large-scale hyperspectral datasets with
varying spectral bands. The authors improve the algorithm by adapting the encoding
process to better capture the correlations within both spatial and spectral dimensions
of hyperspectral data. One key improvement discussed in this study is integrating
an adaptive strategy that optimizes the encoding of wavelet coefficients. This modifi-
cation ensures the most critical spectral information is preserved, resulting in higher
reconstruction quality and better compression performance. The study demonstrates
the effectiveness of the enhanced EZW algorithm by comparing its results to tradi-
tional wavelet-based methods, showing higher compression ratios and reduced MSE.
The authors also highlight the challenges of balancing compression efficiency with
computational complexity, especially for hyperspectral data, where both spatial and
spectral redundancies must be exploited effectively. The improved EZW algorithm
addresses these challenges by refining the encoding process while maintaining the
progressive transmission feature of the original EZW, making it suitable for applica-

tions like remote sensing.

Set Partitioning in Hierarchical Trees (SPIHT) is another popular wavelet-based
technique that improves upon EZW by refining the process of identifying significant
coefficients. SPIHT offers enhanced performance by refining how coefficients are par-
titioned into significant and insignificant sets [Singh et al., 2017, Dudhagara and Patel,
2017]. It uses a hierarchical tree structure to group related coefficients, allowing it to
prioritize the transmission of the most important data first. This results in higher com-
pression ratios and better quality at lower bit rates than EZW. SPIHT also supports

progressive transmission, meaning that an image’s quality can improve incrementally
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as more bits are received. This makes it particularly effective for applications where
transmission bandwidth is limited, such as satellite imaging or medical data process-
ing, as the image can be reconstructed progressively without needing the full dataset

[Dodla et al., 2013].

This research [Dodla et al., 2013] compares the effectiveness of two wavelet-based
image compression algorithms: EZW and SPIHT. The study focuses on the strengths
and limitations of each method in terms of compression efficiency and image qual-
ity. The authors highlight that both EZW and SPIHT leverage wavelet transforms to
encode images in a scalable manner, transmitting important coefficients first. How-
ever, SPIHT is shown to outperform EZW by refining the way coefficients are par-
titioned and transmitted. It introduces hierarchical structures to better capture sig-
nificant coefficients, resulting in higher Peak Signal-to-Noise Ratio (PSNR) and lower
Mean Squared Error (MSE) compared to EZW. Additionally, SPIHT supports progres-
sive transmission, allowing image quality to improve incrementally as more data is
received—a feature especially valuable in scenarios with bandwidth constraints. This
research concludes that SPIHT is better suited for applications requiring high-quality
compression at low bit rates, such as medical imaging and remote sensing, due to its

improved coding efficiency and progressive transmission capabilities.

Raja et al. [Raja and Suruliandi, 2011] provides a detailed comparison of wavelet-
based compression techniques, focusing on SPIHT and (Adaptively Scanned Wavelet
Difference Reduction) ASWDR. SPIHT’s hierarchical tree structure allows for efficient
sorting and encoding of significant coefficients, resulting in superior compression per-
formance with minimal loss of image quality. On the other hand, ASWDR enhances
compression by dynamically adjusting its scanning order to predict the location of
significant coefficients better, leading to higher resolution in compressed images. The
research emphasizes that while ASWDR improves edge detail preservation, SPTHT

remains a preferred choice due to its simplicity, adaptability, and efficient handling of
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spatial orientation trees.

SreeVidya et al. [SreeVidya et al., 2016] provides a comprehensive overview of the
application of the SPIHT algorithm for wavelet-based image compression. The study
focuses on the efficiency of SPIHT in encoding images by using hierarchical partition-
ing, which separates significant and insignificant coefficients. This approach enables
progressive transmission, meaning that the image’s quality improves as more data
is received, making it suitable for applications where bandwidth is limited. The pa-
per discusses the steps involved in SPIHT, including sorting and refinement passes.
The algorithm’s structure relies on lists, such as the List of Significant Pixels (LSP)
and the List of Insignificant Sets (LIS), to ensure that only relevant coefficients are
encoded first, minimizing redundancy. The authors also explore the use of the Dis-
crete Wavelet Transform (DWT) to decompose the image into subbands before SPIHT
encoding. This process helps capture both high- and low-frequency components, im-
proving the compression ratio without sacrificing reconstruction quality. The authors
highlight the advantages of SPIHT over traditional methods like JPEG, emphasizing
its adaptability and high PSNR. However, they also note that SPIHT’s effectiveness de-
pends on appropriate threshold selection and efficient management of computational

resources during encoding and decoding.

Jaiswal et al. [Jaiswal and Sedamkar, 2014] explores the comparative performance
of EZW and SPIHT for image compression. The focus of the study is on evaluating
how both algorithms leverage wavelet transforms to encode images efficiently while
preserving quality. The authors highlight that while both EZW and SPIHT employ
wavelet decomposition to compress images, SPIHT offers enhanced performance by
introducing more refined partitioning and progressive transmission of wavelet coeffi-
cients. SPIHT enhances EZW by employing spatial orientation trees to hierarchically
structure coefficients for more efficient compression. This structure ensures that sig-

nificant coefficients are encoded first, which enhances compression ratios and reduces
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MSE in the reconstructed image. This study emphasizes that SPIHT’s progressive
transmission allows partial image reconstruction, improving quality incrementally as
more data becomes available, a feature valuable for bandwidth-constrained environ-

ments such as remote sensing.

The study provides quantitative performance metrics, comparing PSNR and MSE
for the two algorithms. SPIHT consistently outperforms EZW in terms of both com-
pression efficiency and visual quality, achieving higher PSNR values. However, the
study notes that SPIHT’s improved performance comes at the cost of increased com-
putational complexity, which could be a limiting factor for certain real-time applica-
tions. This study demonstrates that SPIHT is a more effective algorithm than EZW
for applications requiring high-quality compression at low bit rates, such as satel-
lite imaging and medical diagnostics. However, the trade-off between computational
complexity and performance needs to be carefully considered based on the applica-

tion requirements.

Zala et al. [Zala and Parmar, 2013] applied SPIHT to hyperspectral images, where
both spatial and spectral dimensions are utilized in the wavelet decomposition. This
adaptation enhances compression by taking advantage of the correlations within and
across spectral bands, achieving higher compression ratios than traditional implemen-
tations. However, the added dimensionality also increases the computational com-
plexity, requiring more memory and processing power during encoding and decod-
ing.

The Set Partitioned Embedded Block (SPECK) algorithm is designed for efficient
wavelet-based image compression by focusing on block-based encoding. This block-
based method allows SPECK to capitalize on the spatial correlations within small sec-
tions of an image, improving both compression and decompression times. By par-
titioning the wavelet-transformed image into smaller sub-blocks, SPECK effectively

manages memory and processing resources, making it well-suited for real-time and
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hardware-constrained environments, such as medical imaging or remote sensing ap-
plications [Cheng et al., 2014]. One of SPECK’s strengths lies in its rate-distortion per-
formance, where it achieves near-optimal compression by adaptively adjusting the
encoding precision for different blocks based on their importance. This precision is
determined by a recursive partitioning process that divides the image into significant
and insignificant sets. Only the most important blocks are encoded with high fidelity,
while less critical blocks are compressed more aggressively, leading to high compres-

sion ratios with minimal impact on image quality [Shapiro, 1993a].

Additionally, SPECK is recognized for its ability to handle progressive transmis-
sion, similar to SPIHT, where more critical image information is transmitted first. This
is particularly advantageous in applications where image transmission must be halted
due to bandwidth constraints, as the partially received data will still produce a visu-
ally coherent image. Wavelet decomposition enhances this process by transforming
the image into multiple resolution levels, with SPECK further refining the data into

progressively smaller blocks based on their significance [Shapiro, 1993a].

SPECK’s block-based approach has also been adapted for hyperspectral image
compression, where spectral and spatial correlations need to be exploited for effec-
tive data reduction. In this adaptation, SPECK compresses both spatial and spectral
data simultaneously, improving the efficiency of hyperspectral image compression
by focusing on localized features within each block [Raja and Suruliandi, 2011, Cheng
etal., 2014]. This versatility, combined with SPECK’s efficient use of computational re-
sources, makes it a robust choice for a variety of applications where efficient wavelet-

based compression is critical.

Tang et al. [Tang and Pearlman, 2006] investigated SPECK for three-dimensional
hyperspectral images, organizing the data into blocks before compression. This ap-
proach allows for a more localized treatment of the wavelet coefficients, leading to

better management of spatial and spectral correlations and yielding improved com-
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pression performance. Tang et al. demonstrated that applying the SPECK algorithm
to hyperspectral images offers several advantages by encoding wavelet coefficients
block by block. This localized block-based encoding ensures more precise handling of
spatial and spectral correlations. The approach improves compression efficiency and
allows flexibility in adapting compression rates across different blocks, which is use-
ful for heterogeneous datasets. However, managing block partitions and optimizing
encoding parameters for both spatial and spectral dimensions introduces additional

computational overhead.

Regression Wavelet Analysis (RWA) is an approach used in hyperspectral image
compression, particularly for lossless encoding. RWA combines wavelet decomposi-
tion with regression models to efficiently compress data by predicting wavelet coeffi-
cients across multiple scales. After performing a wavelet transform on spectral bands,
linear regression is applied to estimate detail coefficients based on approximation co-
efficients, capturing intricate relationships within the data. This technique minimizes

prediction residuals, ensuring high reconstruction accuracy [Ahanonu et al., 2019].

Clustering-based Regression Wavelet Analysis (RWA-C) integrates k-means clus-
tering into wavelet analysis, grouping similar spectral components to enhance com-
pression. This approach assigns feature vectors to each cluster, which are used during
regression to improve prediction accuracy and reduce entropy in the residuals. The
clustering step ensures that similar regions are processed together, minimizing redun-
dancy and boosting efficiency in hyperspectral data compression. However, balancing
the computational cost of clustering with compression gains remains a challenge. For

more information, see the detailed discussion [Ahanonu et al., 2019].

Amrani et al. [Amrani et al., 2016] proposed a method that combines wavelet-based
techniques with regression analysis for hyperspectral image compression. This pre-
dictive approach uses wavelet coefficients to forecast pixel values based on local image

features, further enhancing the accuracy of compression. Regression wavelet analy-
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sis offers the benefit of reducing prediction errors while retaining important spectral

information.

2.4.2.3 Karhunen-Loeve Transform (KLT)

The Karhunen-Loeve Transform has also been used to reduce spectral redundancy in
hyperspectral images before applying other compression techniques like JPEG2000.
KLT-based methods can compress the most relevant spectral information into fewer
components by focusing on principal components, optimizing compression ratios while
preserving significant features [Gonzalez-Conejero et al., 2009].

By applying KLT as a pre-processing step before methods like JPEG2000, the trans-
formed data can be compressed more efficiently, with the reduced number of principal
components minimizing the amount of data to be encoded. This synergy between KLT
and other compression techniques optimizes the compression ratio while retaining the
essential features required for tasks such as classification or object detection [Ahanonu
etal., 2019]. Furthermore, KLT helps mitigate artifacts and losses associated with lossy
compression by focusing the compression efforts on the most informative parts of the
data. However, the computational cost of calculating eigenvectors and eigenvalues for
large datasets can be a challenge, especially in real-time applications. To address this,
approximate or incremental KLT algorithms have been explored, providing a trade-
off between performance and computational efficiency. Despite these challenges, KLT
remains a powerful tool for hyperspectral image processing, particularly in remote
sensing, environmental monitoring, and defense applications, where preserving spec-
tral integrity is crucial for further analysis and interpretation [Cheng et al., 2014].

SA-JPEG2000 (Spatially Adaptive JPEG2000) extends the standard JPEG2000 frame-
work by incorporating the Karhunen-Loeve Transform (KLT) to address the chal-
lenges of spectral redundancy in hyperspectral images. This combined approach al-

lows the compression system to apply KLT to reduce inter-band correlations, com-
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pacting the most essential spectral information into fewer components. After spectral
decorrelation, the JPEG2000 framework processes the spatial components efficiently,
ensuring a high compression ratio without compromising the quality of critical data
[Gonzalez-Conejero et al., 2009, Ahanonu et al., 2019].

A unique feature of SA-JPEG2000 is its handling of “no-data” regions—areas in
the hyperspectral image that contain no meaningful information. These regions can
arise due to sensor limitations, cloud cover in remote sensing images, or occlusions.
The SA-JPEG2000 algorithm optimizes the compression process by bypassing or en-
coding no-data regions minimally, reducing the computational and storage burden.
This targeted compression ensures that only relevant portions of the data consume
bandwidth and memory, further enhancing the method’s efficiency [Cheng et al,,
2014, Ahanonu et al., 2019]. This approach is particularly valuable for applications
in satellite imaging, where data from certain regions may not be useful or fully cap-
tured. By selectively compressing active regions and minimizing the impact of no-
data areas, SA-JPEG2000 achieves a better balance between compression performance
and data quality. However, the computational overhead of performing both KLT and
JPEG2000 encoding may require hardware acceleration or parallel processing to meet
real-time processing demands. As a result, SA-JPEG2000 is a suitable choice for sce-
narios where high spectral and spatial fidelity must be preserved, such as environ-
mental monitoring, agricultural analysis, or military surveillance [Gonzalez-Conejero

et al., 2009, Ahanonu et al., 2019].

2.4.24 Hybrid Transform Techniques

Combining multiple transforms, such as wavelet transforms and DCT, offers a power-
ful strategy for enhancing hyperspectral image compression. Each transform focuses
on different aspects of the data, with wavelets efficiently capturing local variations

and high-frequency components and DCT excelling at encoding global, low-frequency
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features. Together, these complementary transforms provide a more flexible and adap-
tive compression framework, enabling finer adjustments based on the characteristics
of different spectral bands [Amrani et al., 2016, Ahanonu et al., 2019]. The wavelet
transform decomposes an image into subbands, isolating high-frequency details such
as edges and textures. In contrast, DCT aggregates the low-frequency information,
condensing it into fewer coefficients, which reduces redundancy in smoother regions
of the image. This hybrid approach ensures that both local anomalies (captured by
wavelets) and global trends (captured by DCT) are effectively managed, yielding bet-

ter compression ratios with minimal loss of data quality [Cheng et al., 2014].

This multi-transform strategy is especially beneficial for heterogeneous hyperspec-
tral data, where certain spectral bands contain more noise or less relevant information.
By applying the appropriate transform to different components, the compression al-
gorithm can prioritize high-value regions while reducing the size of redundant or less
significant data. Additionally, hybrid transform-based methods can adapt to vary-
ing bitrate constraints, ensuring optimal performance for real-time applications such
as satellite imaging or environmental monitoring. However, implementing a hybrid
wavelet-DCT framework introduces computational complexity, as each transform re-
quires separate processing. To address this, some methods employ optimization tech-
niques or hardware accelerators to achieve real-time performance. Nonetheless, the
combination of multiple transforms continues to be a promising avenue for advancing
hyperspectral image compression, balancing efficiency with high data fidelity [Am-
rani et al., 2016, Ahanonu et al., 2019].

The shared source encoding approach using embedded zero tree DCT (EZT-DCT)
proposed by Pan et al. simplifies the compression process by encoding only the signif-
icant DCT coefficients, similar to the concept used in EZW for wavelets. This method
leverages zero trees, which efficiently represent zero-valued coefficients and their de-

scendants, reducing redundancy and bitstream size. It provides an effective balance
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between compression efficiency and computational simplicity, making it an attractive
option for applications requiring fast encoding and decoding with minimal resources
[Pan et al., 2011]. In their work, Pan et al. proposed a low-complexity image compres-
sion technique using EZT-DCT. The key innovation of this method lies in integrating
the DCT with zero-tree encoding to enhance image compression efficiency. By lever-
aging DCT’s energy compaction properties alongside the hierarchical representation
of zero-tree encoding, this approach reduces computational overhead compared to
traditional wavelet-based methods. This makes it particularly suitable for resource-

constrained environments such as mobile or embedded systems [Pan et al., 2011].

To extend the approach proposed by Pan et al., 3D-DCT was introduced by Qiao
et al. and Rasti et al.. These works address the challenges posed by the large di-
mensionality of hyperspectral images by dividing the data into 8 x 8 x 8 subcubes.
This grouping ensures that spatial and spectral redundancies are exploited efficiently
within small, manageable blocks. The 3D-DCT approach not only improves compres-
sion ratios but also allows for band-specific access during decompression, a critical
feature for hyperspectral imaging, where users often need to analyze only a subset of
bands rather than the entire dataset [Qiao et al., 2014, Rasti et al., 2012]. Qiao et al.
extended the concept to 3D-DCT compression for hyperspectral data. Their method
processes 8 x 8 x 8 subcubes, taking advantage of the spatial and spectral correlations
within these blocks. This extension ensures high compression efficiency and enables
the selective decoding of individual bands, optimizing performance for tasks like re-
mote sensing or agricultural monitoring, where only specific bands are analyzed [Qiao
et al., 2014]. Rasti et al. further refined the 3D-DCT-based compression framework by
optimizing the block size and improving the quantization process to enhance both
compression ratio and reconstruction quality. They demonstrated that their method
outperforms other transform-based techniques on various hyperspectral datasets, of-

fering a practical solution for large-scale data management. This work highlights the
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importance of balancing compression efficiency, quality, and access speed for effective

hyperspectral image processing [Rasti et al., 2012].

The adaptive band selection technique introduced alongside 3D-DCT addresses
the challenge of high redundancy across spectral bands in hyperspectral images. In
hyperspectral datasets, many bands contain similar information, which leads to un-
necessary data duplication during compression. The adaptive band selection strategy
works by grouping highly correlated bands based on their spectral similarity, ensur-
ing that only essential information is retained for compression. This dimensionality
reduction not only improves compression efficiency but also accelerates the encod-
ing and decoding processes by reducing the number of bands to process [Rasti et al.,
2012]. Once the correlated bands are grouped, they are compressed using JPEG-LS,
a lossless compression standard optimized for images with smooth gradients. JPEG-
LS enhances the performance of 3D-DCT by efficiently encoding the reduced spectral
data, leading to better compression ratios and faster decompression speeds. This com-
bination ensures that while redundant data is minimized, the spectral fidelity of the
retained information remains intact, making it suitable for applications like remote
sensing and agriculture, where accurate spectral information is critical for analysis
[Cheng et al., 2014]. The adaptive band selection technique also enables flexibility in
data access, as grouped bands can be selectively decoded based on the user’s require-
ments. This is particularly advantageous for large-scale hyperspectral datasets, as
users often need only a specific subset of bands. Additionally, by minimizing redun-
dant spectral data, the overall storage and transmission requirements are significantly
reduced, making this method well-suited for real-time applications with limited band-

width or storage constraints [Ahanonu et al., 2019].

Karami et al. [Karami et al., 2010] introduced a Hybrid 3D-DCT and Tucker De-
composition method for hyperspectral image compression, combining two power-

tul techniques to leverage both spectral and spatial correlations. The 3D-DCT effi-
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ciently reduces redundancy within localized blocks of the hyperspectral cube, while
the Tucker decomposition captures global data structures by factorizing the data into
a core tensor and factor matrices. This hybrid approach balances local and global
data representation, resulting in high compression ratios while preserving spectral fi-
delity. Karami et al. demonstrated that their method is particularly effective for large
datasets, offering superior performance compared to individual use of either DCT or
Tucker decomposition, making it suitable for real-world applications like remote sens-

ing and environmental monitoring.

Toreyin et al. [Toreyin et al., 2015] explored wavelet transform-based spectral
decorrelation techniques for lossless hyperspectral image compression. Their method
applies wavelet transforms to decompose the hyperspectral data into multiple fre-
quency subbands, separating high-frequency noise from meaningful low-frequency
components. This decomposition allows the algorithm to decorrelate spectral bands
efficiently, ensuring that redundant information is minimized across the dataset. The
wavelet-based approach not only preserves essential spectral features but also achieves
high compression efficiency without compromising the reconstruction quality. Toreyin
et al.’s technique is particularly valuable for applications requiring lossless compres-

sion, such as scientific imaging and medical diagnostics, where data integrity is paramount.

Furthermore, Nagendran et al. [Nagendran et al., 2024] proposed a lossless hyper-
spectral image compression technique that combines spectral decorrelation methods
with Binary Embedded Zero Tree Wavelet (BEZW) coding. This approach leverages
the wavelet transform’s ability to separate image data into different frequency compo-
nents, minimizing both spatial and spectral redundancy. By applying BEZW coding to
the wavelet coefficients, the algorithm efficiently encodes regions with minimal infor-
mation, resulting in highly compressed bitstreams with minimal loss of quality. The
use of spectral decorrelation prior to BEZW coding ensures that redundant informa-

tion across the many spectral bands of hyperspectral data is reduced. This combina-
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tion is particularly effective for remote sensing applications, where high compression
ratios are essential due to bandwidth and storage limitations. However, one challenge
lies in maintaining high-quality reconstruction across varying spectral distributions,
as BEZW coding assumes certain properties in the underlying data that may not al-
ways hold. The study demonstrates that BEZW-based compression offers a promis-
ing balance between computational complexity and compression efficiency, making it
ideal for onboard systems in satellites or aerial platforms.

Transform-based compression techniques have played a critical role in hyperspec-
tral image compression, as outlined in Table 2.2. Methods such as the Hybrid 3D-
DCT and Tucker Decomposition proposed by Karami et al. [Karami et al., 2010], and
wavelet transform-based spectral decorrelation techniques [Toreyin et al., 2015], pro-
vide efficient means of compressing hyperspectral images by leveraging spectral and
spatial redundancy. These transform-based techniques continue to be foundational in

reducing the complexity and storage requirements of hyperspectral data.

Table 2.2: Related Work on Transform-Based Techniques

Year Paper Details Datasets

2010 Hyperspectral image | Uses Hybrid 3D-DCT and TD AVIRIS
compression based on
Tucker decomposition
and discrete cosine
transform [Karami

etal., 2010]

2014 An Improved EZW Adopts the spatial-spectral hybrid transform | AVIRIS
Hyperspectral Image | and the proposed transform-based coder

Compression [Cheng

etal., 2014]

Continued on next page
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Table 2.2 — continued from previous page

Year Paper Details Datasets

2015 Lossless hyperspectral | Uses JPEG-LS AVIRIS
image compression
using wavelet
transform based
spectral decorrelation

[Toreyin et al., 2015]

2016 Lossy compression of | Combines channels into a group and uses Landsat
Landsat multispectral | DCT
images [Kozhemiakin

etal., 2016]

2016 Regression Wavelet Introduces a wavelet-based scheme to AVIRIS
Analysis for Lossless | increase coefficient independence in
Coding of hyperspectral images

Remote-Sensing Data

2017 ROI-based on-board Uses a clustering algorithm that AVIRIS
compression for automatically segments the image
hyperspectral remote
sensing images on

GPU [Giordano and

Guccione, 2017]

2018 A new algorithm for Uses a transform-based lossy compression Indian Pines,
the on-board algorithm, namely Lossy Compression Pavia
compression of Algorithm for Hyperspectral Image Systems

hyperspectral images | (HyperLCA)
[Guerra et al., 2018]

Continued on next page
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Table 2.2 — continued from previous page

68

Year

Paper

Details

Datasets

2019

Clustering Regression
Wavelet Analysis for
Lossless Compression
of Hyperspectral
Imagery [Ahanonu

etal., 2019]

Proposes Clustering Regression Wavelet
Analysis (RWA-C), which improves
compression performance while maintaining

component scalability

AVIRIS

2019

Multispectral
transforms using
convolution neural
networks for remote
sensing multispectral
image compression

[Li and Liu, 2019]

Uses CNN5s to compress HSIs

Not mentioned

2020

Fuzzy transform for
high-resolution
satellite images
compression [Monica
and Widipaminto,
2020]

Uses fuzzy transform to compress images

Pleiades
constellation

satellites

2023

Curvelet Transform
Based Compression
Algorithm for Low
Resource
Hyperspectral Image
Sensors [Bajpai et al.,

2023]

Proposes a curvelet transform-based method

for hyperspectral image compression

Pavia

Continued on next page
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Table 2.2 — continued from previous page

Year Paper Details Datasets

2024 Lossless hyperspectral | Explores the utilization of Binary Embedded | Pavia
image compression by | Zero Tree Wavelet Algorithms (BEZW) to
combining the compress hyperspectral images

spectral decorrelation
techniques with
transform coding
methods [Nagendran
etal., 2024]

2.4.3 PCA and Tensor Decomposition-Based Techniques

Principal Component Analysis (PCA) and Tensor Decomposition techniques have
gained application in hyperspectral image compression due to their ability to reduce
the dimensionality of large datasets while preserving essential spectral information.
These techniques are particularly useful for hyperspectral images, where the num-
ber of spectral bands is significantly higher than that of typical RGB or multispectral
images.

PCA-based methods have been extensively used for compressing hyperspectral
images. For instance, Uddin ef al. [Uddin et al., 2021] applied both non-linear and lin-
ear variants of PCA to reduce the dimensionality of hyperspectral images. Uddin et
al. demonstrated the effectiveness of both linear and non-linear PCA for hyperspectral
image compression by reducing high-dimensional data into fewer components while
retaining essential spectral features. The linear variant offers simplicity and compu-
tational efficiency, making it suitable for real-time processing, whereas the non-linear
PCA variant captures complex, non-linear patterns in the data, improving compres-
sion quality for applications requiring higher precision. This dual approach allows

for better adaptability across various datasets, balancing between speed and accuracy
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depending on the task requirements.

Similarly, Gowtham et al. [Gowtham et al., 2021] incorporated PCA with a Siamese
network, effectively using the combination to compress hyperspectral data and im-
prove classification performance. The Siamese network, known for its ability to learn
similarity metrics, helps capture intricate relationships between spectral bands. When
combined with PCA, this method not only reduces data dimensionality but also pre-
serves discriminative features crucial for accurate classification. This synergy between
PCA'’s feature reduction and the network’s similarity learning offers a robust frame-

work for hyperspectral image analytics.

Jayaprakash et al. [Jayaprakash et al., 2020] extended the PCA framework by
applying Randomized Independent Component Analysis (RFICA) and Randomized
Linear Discriminant Analysis (RFLDA) to achieve more efficient compression. These
methods leverage the ability of PCA and similar techniques to identify and re-
duce redundancy among the spectral bands, making them highly effective for high-
dimensional data like hyperspectral images. This framework ensures efficient com-
pression with minimal loss of spectral information, offering a valuable balance be-

tween accuracy and performance.

Tensor Decomposition techniques, such as the Correlation-Based Tucker Decom-
position (CBTD) proposed by Li et al. [Li et al.,, 2021], aim to decompose the multi-
dimensional data into smaller, more manageable components while retaining the core
information. Aidini et al. [Aidini et al., 2019] applied low-rank tensor completion to
compress hyperspectral images while also enhancing their super-resolution capabili-

ties.

Similarly, Xue et al. [Xue et al., 2019] proposed a nonlocal tensor sparse and low-
rank regularization (NTSRLR) approach, which efficiently captures the structured
sparsity of hyperspectral images for compressive sensing reconstruction. Tensor de-

composition methods further extend compression capabilities by addressing multi-
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Year | Paper Details Datasets
2019 | Nonlocal tensor sparse repre- | Proposes a mnonlocal tensor | Pavia, Indian Pines
sentation and low-rank regular- | sparse and low-rank regulariza-
ization for hyperspectral image | tion (NTSRLR) approach, which
compressive sensing reconstruc- | can encode essential structured
tion [Xue et al., 2019] sparsity of an HSL
2020 | PCA-based feature reduction for | Uses non-linear and linear vari- | Indian Pines
hyperspectral remote sensing | ants of PCA to compress HSIs.
image classification [Uddin et al.,
2021]
2020 | Randomized independent com- | Applies Randomised inde- | Salinas, Pavia
ponent analysis and linear dis- | pendent component analysis
criminant analysis dimensional- | (RFICA) and randomised linear
ity reduction methods for hy- | discriminant analysis (RFLDA)
perspectral image classification | to compress HSIs.
[Jayaprakash et al., 2020]
2021 | Hyperspectral image analysis | Uses PCA and siamese network. | Pavia, Indian Pines
using  principal = component
analysis and siamese network
[Gowtham et al., 2021]
2021 | The correlation-based Tucker de- | Proposes a CBTD method that | Indian Pines, Salinas
composition for hyperspectral | can be directly used in most
image compression [Li et al., | tensor-based compression meth-
2021] ods to obtain a highly improved
compression performance.

Table 2.3: Related Work on PCA and Tensor Decomposition-Based Techniques

dimensional redundancies. Techniques such as Correlation-Based Tucker Decomposi-
tion (CBTD) efficiently break down hyperspectral data into smaller components with-
out losing essential spectral information. Similarly, nonlocal tensor regularization ap-
proaches like NTSRLR leverage both sparse and low-rank structures to ensure more
efficient data reconstruction for hyperspectral image datasets [Licciardi et al., 2014].
Table 2.3 summarizes the recent advancements in PCA and tensor decomposition-
based compression methods, highlighting their effectiveness across several bench-

mark datasets such as Indian Pines, Salinas, and Pavia.

244 Compressive Sensing-Based Techniques

Compressive Sensing (CS) techniques have recently emerged as powerful tools for hy-

perspectral image compression, offering the ability to reconstruct high-dimensional
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signals from fewer measurements than conventional methods. These techniques ex-
ploit the sparsity inherent in hyperspectral images, allowing for a significant reduc-
tion in data while preserving critical information for tasks such as classification and

reconstruction.

One such technique is the SHSIR (Sparsification of Hyperspectral Image and Re-
construction) algorithm proposed by Gunasheela et al. [Gunasheela and Prasan-
tha, 2018], which compresses hyperspectral images using a sparse reconstruction ap-
proach. This method is particularly well-suited for satellite imagery, as demonstrated
on the URBAN dataset. SHSIR focuses on identifying the most relevant spectral com-
ponents while discarding redundant information, ensuring that critical features are
preserved. This sparse representation is particularly effective for satellite-based im-
agery, as shown using the URBAN dataset, where limited bandwidth and storage are
constraints. However, the algorithm’s reliance on sparse reconstruction may intro-
duce challenges in real-time scenarios, given the computational resources required for

high-dimensional data processing.

One such technique is the Sparsification of Hyperspectral Image and Reconstruc-
tion (SHSIR) algorithm proposed by Gunasheela et al. [Gunasheela and Prasan-
tha, 2018], which compresses hyperspectral images using a sparse reconstruction ap-
proach. This method is particularly well-suited for satellite imagery, where band-
width and storage constraints require efficient data representation. SHSIR identifies
the most relevant spectral components while discarding redundant information, pre-
serving critical features essential for analysis. However, its reliance on sparse recon-
struction may introduce computational challenges in real-time applications, particu-

larly due to the high-dimensional nature of hyperspectral data processing.

Similarly, Kumar et al. [Kumar et al.,, 2018] proposed a real-time compressive
sensing-based scheme on board aimed at satellite applications, where data storage

and transmission capacities are restricted. Their method combines deep learning with
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Year | Paper Details Datasets
2018 | Onboard hyperspectral image | Proposes a real-time onboard | Pavia
compression using compressed | compression scheme.
sensing and deep learning [Ku-
mar et al., 2018]
2019 | Compressive sensing approach | Proposes a new algorithm called | URBAN
to satellite hyperspectral image | SHSIR (sparsification of hyper-
compression [Gunasheela and | spectral image and reconstruc-
Prasantha, 2018] tion) for the compression of HSI
using the compressive sensing
approach.
2019 | Nonlocal tensor sparse represen- | Proposes a nonlocal tensor sparse | Pavia, Indian Pines
tation and low-rank regulariza- | and low-rank regularization
tion for hyperspectral image com- | (NTSRLR) approach, which can
pressive sensing reconstruction | encode essential structured spar-
[Xue et al., 2019] sity of an HSI.

Table 2.4: Related Work on Compressive Sensing-Based Techniques

compressed sensing, achieving high compression ratios while maintaining fidelity in
the reconstructed data. By combining the strengths of compressed sensing and neural
networks, the method effectively balances data fidelity with storage and transmission
constraints, making it ideal for remote sensing applications. However, optimizing
deep learning models for onboard use presents challenges in terms of computational

efficiency and hardware limitations.

Xue et al. [Xue et al., 2019] further advanced compressive sensing techniques by
incorporating a Nonlocal Tensor Sparse and Low-rank Regularization (NTSRLR) ap-
proach. This method effectively reduces the dimensionality of hyperspectral data
while retaining the spatial and spectral coherence necessary for high-quality recon-
struction. NTSRLR is particularly well-suited for large hyperspectral datasets, balanc-
ing dimensionality reduction with high fidelity. However, the nonlocal nature of the
approach introduces computational complexity, requiring optimization for real-time
applications and large-scale processing. Table 2.4 details the key contributions of com-
pressive sensing techniques, emphasizing their utility in reducing hyperspectral data

volumes without compromising the overall accuracy of reconstruction tasks.
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2.4.5 Dictionary Learning and Sparse Coding

Recent advancements in machine learning have significantly influenced hyperspectral
image compression, particularly through dictionary-based learning (DL) and sparse
coding techniques. These methods aim to capture the intrinsic properties of the data
by using only a subset of dictionary elements, unlike traditional fixed dictionary ap-
proaches [Qian et al., 2012, UlkU and TOreyin, 2014]. For example, dictionary learn-
ing algorithms applied to hyperspectral data can achieve high compression efficiency
through sparse representation [Charles et al., 2011]. This approach adapts the dictio-
nary to the unique properties of the data, ensuring that only the most relevant com-
ponents are retained. By focusing on sparse coding, the method reduces storage re-
quirements while maintaining essential spectral information for accurate reconstruc-
tion. However, constructing optimal dictionaries can be computationally intensive,
especially for large datasets, requiring advanced optimization techniques for practical

implementation.

In this study, the authors explore the application of dictionary learning algorithms
for hyperspectral image compression, emphasizing the effectiveness of sparse repre-
sentation techniques in achieving high compression efficiency. The core idea of sparse
representation is to express data using a small number of significant elements from
a larger dictionary. In the context of hyperspectral images, this means that the high-

dimensional data can be approximated well using a few dictionary elements.

The authors demonstrate that the compression process can retain essential infor-
mation while reducing the overall data size by selecting the most relevant features
from hyperspectral data. The paper discusses various dictionary learning methods
designed to adaptively learn a dictionary from the hyperspectral data itself, rather
than relying on pre-defined or fixed dictionaries. This adaptability allows the algo-

rithm to tailor the dictionary to the specific characteristics of the dataset, enhancing
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the representation capability for the unique spectral signatures found in hyperspectral
images. The findings from this research highlight the potential for dictionary learning

algorithms to be integrated into practical hyperspectral imaging systems.

An online training sparse encoding technique was recently introduced for hyper-
spectral image compression, representing a pioneering application of online dictio-
nary learning in this domain [UlkU and Toreyin, 2015, Castrodad et al., 2011]. The
study [UlkU and Toreyin, 2015] introduces an innovative online training sparse en-
coding technique for hyperspectral image compression, representing a significant ad-
vancement in the application of online dictionary learning. This approach aims to
optimize the representation of hyperspectral data by leveraging sparse coding, which
focuses on using a minimal number of dictionary elements to reconstruct the data ac-
curately. The authors detail a two-stage algorithm that consists of a dictionary learn-
ing phase followed by a dictionary update phase. The initial phase is the dictionary
learning phase. In this initial phase, the algorithm randomly selects data samples from
the hyperspectral image cube. Sparse coding is then performed using the Least Angle
Regression (LARS) algorithm to find sparse coefficients that minimize the reconstruc-
tion error. Constraints are enforced to ensure the coefficients and dictionary elements

remain non-negative, which is essential for hyperspectral data representation.

The second phase is the dictionary update phase. After obtaining the sparse rep-
resentations, the dictionary is updated iteratively. This update is based on auxiliary
matrices that help refine the dictionary elements to fit the training data better. The al-
gorithm continues to adjust the dictionary until the difference between the current and
updated dictionary elements falls below a specified threshold. The proposed method
has shown promising results, achieving competitive compression performance com-
pared to state-of-the-art techniques, such as JPEG2000 and other predictive lossy com-

pression methods.

Extensive experiments conducted using datasets like AVIRIS demonstrate the ef-
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fectiveness of this online learning approach in enhancing both compression efficiency
and data reconstruction quality [UlkU and Toreyin, 2015]. A recent method integrates
spatial and spectral dictionaries for hyperspectral image denoising and compression.
This approach extracts cubic patches from hyperspectral images and applies PCA-
based clustering in both spatial and spectral domains, resulting in adaptive dictio-
naries tailored for specific data characteristics. This combined strategy improves com-
pression efficiency and data reconstruction accuracy, particularly for complex datasets

like the Columbia Multispectral Image Dataset [Fu et al., 2015].

Additionally, a dictionary learning method incorporating spectral grouping has
been suggested, combining online dictionary learning with classification character-
istics of spectral curves. The paper [Jifara et al., 2017] presents a novel approach
to hyperspectral image compression that integrates dictionary learning with spectral
grouping techniques. This method leverages the unique classification characteristics
of spectral curves to enhance the performance of dictionary learning in capturing the
inherent structure of hyperspectral data. The authors propose that hyperspectral im-
ages often exhibit inherent similarities within certain spectral bands. By grouping
these similar bands, the algorithm can reduce redundancy and improve the efficiency
of the compression process. The grouping is based on the spectral signatures of the
pixels, which allows the method to focus on the most representative features of the

data.

The research employs an online dictionary learning framework that updates the
dictionary in real-time as new data becomes available. This dynamic adaptation
is particularly beneficial for hyperspectral imaging applications, where the acquisi-
tion of data is often sequential. By continually refining the dictionary based on the
grouped spectral characteristics, the algorithm ensures that it maintains an accurate
representation of the data throughout the compression process. Through this com-

bined approach, the authors demonstrate that the proposed method significantly en-
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hances data reconstruction quality while maintaining high compression ratios. The
algorithm’s ability to effectively capture and represent the essential features of the
hyperspectral data leads to improved performance compared to traditional fixed dic-
tionary approaches. The results presented in this study indicate that the integration of
spectral grouping with online dictionary learning is a promising direction for advanc-
ing hyperspectral image compression techniques. This approach not only improves
compression efficiency but also facilitates better preservation of spectral information
during the encoding process [Jifara et al., 2017].

Table 2.5 showcases the contribution of Dictionary Learning and Sparse Coding-
based techniques to hyperspectral image compression. These methods, such as those
by Jifara et al. [Jifara et al., 2017], apply a spectral dictionary learned through sparse
coding to compress hyperspectral images effectively. Ulku et al. [UlkU and Kizgut,
2018] extend this by using proximity-based optimization algorithms to achieve large-
scale hyperspectral compression. These techniques exploit the sparsity inherent in
hyperspectral images to minimize data redundancy, resulting in high compression

efficiency without significant loss of critical information.

2.4.6 Predictive Coding Techniques

Predictive coding strategies leverage statistical models to predict pixel values based
on surrounding information. A two-stage prediction technique employing Wiener fil-
tering has been proposed, with the first stage performing initial filtering and the sec-
ond stage refining the prediction using a reverse pixel location search algorithm [Lin
and Hwang, 2010]. The first stage involves initial filtering of the image using Wiener
filtering, a method known for its effectiveness in minimizing the MSE between the
original and reconstructed pixel values. This filtering process works by taking into
account the statistical characteristics of the image noise, leading to a more accurate

prediction of pixel values. The second stage refines this initial prediction through a
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Year | Paper Details Datasets
2014 | Lossy compression of hyperspectral | Proposes a lossy hyperspectral im- | AVIRIS

images using online learning based | age compression method using on-
sparse coding [UlkU and TOreyin, | line learning based sparse coding
2014]
2015 | Sparse coding of hyperspectral im- | Proposed a hyperspectral image | AVIRIS
agery using online learning [UIkU | compression method using a dis-
and Toreyin, 2015] criminative online learning-based
sparse coding algorithm
2017 | Hyperspectral image compression | Uses a spectral dictionary that is | AVIRIS
based on online learning spectral | learned in sparse coding to com-
features dictionary [Jifara et al., | press HSIs.
2017]
2018 | Large-scale hyperspectral image | Uses proximity-based optimization | AVIRIS
compression via sparse represen- | algorithms for HSI compression.
tations based on online learning
[UlkU and Kizgut, 2018]
2019 | Efficient lossless compression of | Proposes an information-theoretic | Natural Scenes
multitemporal hyperspectral image | analysis to estimate potential com-
data [Shen et al., 2018] pression performance for multitem-
poral HSI data.

Table 2.5: Related Work on Dictionary Learning and Sparse Coding Techniques

reverse pixel location search algorithm. This step improves the accuracy of the predic-
tions by assessing the spatial relationships among pixels and correcting any discrep-
ancies from the first stage. By refining the predictions based on a more localized con-
text, this approach aims to enhance the overall reconstruction quality. Wiener filtering
is well-regarded for its ability to reduce noise and enhance signal quality. However,
while it performs well in many scenarios, its effectiveness can be compromised when
dealing with hyperspectral images that exhibit diverse characteristics across different
spectral bands. These variations in spectral signatures and noise characteristics can
challenge the assumptions underlying Wiener filtering, potentially leading to subop-

timal performance in certain cases [Lin and Hwang, 2010].

The authors note that the applicability of Wiener filtering in the context of hyper-
spectral image data may be limited due to the inherent complexity and variability
of the data. This limitation underscores the need for further research into more ro-

bust predictive coding strategies that can adapt to the diverse nature of hyperspectral
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images, ensuring that compression methods remain effective across a wide range of
scenarios [Lin and Hwang, 2010]. Overall, the paper highlights the potential of pre-
dictive coding strategies, particularly with the two-stage Wiener filtering approach, to
improve hyperspectral image compression while also acknowledging the challenges
posed by the variability of hyperspectral data. This research contributes to ongoing ef-
forts to develop more efficient and effective compression techniques in the field of hy-
perspectral imaging. While Wiener filtering is effective in reducing the mean squared
error between the original and reconstructed images, its applicability may be limited

due to the diverse characteristics of hyperspectral image data.

Paper [Zheng et al., 2022] introduces a technique that plays a key role in near-
lossless hyperspectral image compression. It removes spatial and spectral redundan-
cies by iteratively updating prediction coefficients to minimize prediction errors, sig-
nificantly reducing data size while maintaining high reconstruction quality. RLS fil-
tering adapts to new data dynamically, which is particularly useful for hyperspectral
images acquired over time [Zheng et al., 2022]. A recent approach combines pre-
dictive coding with convolutional neural networks (CNNs) to enhance image recon-
struction after lossy compression is introduced in [Valsesia and Magli, 2019]. This
method leverages the spatial and spectral correlations within hyperspectral data and
offers competitive performance compared to traditional predictive coding algorithms.
CNN s are used on the ground segment to correct the residual errors left by onboard
predictive coding, ensuring improved accuracy during decompression [Valsesia and

Magli, 2019].

Paper [Lin and Hwang, 2011] introduces advanced predictive coding schemes that
utilize look-up tables and multi-band prediction models to handle the inter-band cor-
relations in hyperspectral images. These techniques calculate prediction coefficients
by analyzing pixels across multiple spectral bands, refining predictions using linear

models optimized for minimal mean squared error. This strategy enhances the com-
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pression ratio, making it effective for datasets with highly correlated spectral informa-

tion [Lin and Hwang, 2011].

The table on Predictive Coding Techniques (Table 2.6) illustrates approaches that
predict pixel values based on previously known values to achieve hyperspectral im-
age compression. Jiang et al. [Jiang et al., 2018] utilized Long Short-Term Memory
(LSTM)-based recurrent neural networks to reduce prediction errors in hyperspectral
images, enhancing compression performance. In hardware-based solutions, Barrios
et al. [Barrios et al., 2018] implemented the CCSDS 123.0-B-1 compression standard
on FPGA-based systems for real-time compression of hyperspectral data. These pre-
dictive coding methods leverage advanced algorithms to reduce data redundancies,

particularly in sequential spectral data, resulting in efficient compression schemes.

Predictive coding techniques aim to efficiently compress data by predicting pixel
values based on neighboring or previously encoded pixels. In hyperspectral imaging,
these methods become particularly useful for handling no-data regions, where por-
tions of the image contain missing or unimportant information. One effective strategy
involves using GR (Golomb-Rice) codes to encode the prediction residuals and bound-
ary pixels adjacent to these no-data areas. GR codes are well-suited for compressing
residuals with geometric or exponential distributions, as they provide a compact rep-
resentation of small-valued prediction errors, minimizing the overall bitstream size

[Shen et al., 2016, Ahanonu et al., 2019].

However, the efficiency of GR codes is contingent upon the statistical behavior of
the residuals. If the prediction errors deviate from an exponential distribution, the
performance of GR-based encoding can degrade, leading to suboptimal compression
ratios. In such cases, alternative entropy coding techniques, such as arithmetic cod-
ing or Huffman coding, may be required to better match the distribution of residu-
als and improve compression performance [Cheng et al., 2014, Ahanonu et al., 2019].

To address these limitations, some methods incorporate adaptive predictive coding
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Year | Paper Details Datasets
2018 | LSTM based adaptive fil- | Uses LST-RINN. Indian Pines, Pavia
tering for reduced predic-
tion errors of hyperspec-
tral images [Jiang et al.,
2018]
2018 | Hardware implementa- | Hyperspectral Image | AVIRIS, CRISM
tion of the CCSDS 123.0- | Compression —algorithm
B-1 lossless multispectral | is implemented over an
and hyperspectral image | FPGA-based MPSoC.
compression standard
by means of high-level
synthesis tools [Barrios
etal., 2018]
2018 | An efficient real-time | Presents alow-complexity | MODIS, Hyperion, AVIRIS, HICO
FPGA  implementation | high-throughput FPGA
of the CCSDS-123 com- | implementation of
pression standard for | CCSDS-123 compres-
hyperspectral images | sion algorithm with band
[Fjeldtvedt et al., 2018] interleaved by pixel or-
dering.
2019 | High-Throughput = On- | Studies the performance | Not provided
board Hyperspectral | of a faster method based
Image Compression With | on the quantization of the
Ground-Based CNN Re- | image, followed by a loss-
construction [Valsesia and | less predictive compres-
Magli, 2019] Sor.
2019 | Superpixel based recur- | Uses super RLS. AVIRIS
sive least-squares method
for lossless compression
of hyperspectral images
[Karaca and Giillii, 2019]
2022 | Recursive Least Squares | Proposes a near-lossless | AVIRIS

for Near-Lossless Hyper-
spectral Data Compres-
sion [Zheng et al., 2022]

prediction-based  com-
pression scheme that
removes spatial and spec-
tral redundant informa-
tion, thereby significantly
reducing the size of hy-
perspectral images.

Table 2.6: Related Work on Predictive Coding Techniques

strategies, dynamically switching between different coding schemes depending on

the local statistics of the prediction errors. This ensures that no-data regions and their

surrounding areas are encoded efficiently, even when the underlying data distribu-

tion varies. The combination of predictive coding with GR codes offers a lightweight



CHAPTER 2. RESEARCH LANDSCAPE & RELATED WORK 82

solution for hyperspectral data compression, particularly in resource-constrained en-
vironments, such as satellite imaging or onboard sensor systems, where minimizing

transmission size and computation is critical [Cheng et al., 2014, Ahanonu et al., 2019].

2.4.7 Deep Learning-Based Approaches

Deep learning is increasingly adopted for hyperspectral image processing, leverag-
ing complex network architectures to enhance compression. Recent advancements in
hyperspectral image classification [Marmanis et al., 2015, Li et al., 2016, Kussul et al.,
2017] and feature extraction [Romero et al., 2015, Zhao and Du, 2016, Chen et al,,
2016] have demonstrated the potential of deep learning techniques. Paper [Marmanis
et al., 2015] explored the use of deep learning for hyperspectral image classification
by leveraging convolutional neural networks (CNNs). Their approach utilized pre-
trained networks to extract hierarchical spatial features, improving classification per-
formance for remote sensing applications. The method demonstrated the effectiveness
of CNNs in learning discriminative features, even with limited labeled hyperspectral
data.

Deep learning has been widely explored for hyperspectral image classification,
with various methods leveraging both spectral and spatial information for feature ex-
traction. The following studies highlight different approaches that demonstrate the
effectiveness of deep learning in hyperspectral analysis. Li and colleagues [Li et al.,
2016] proposed a stacked autoencoder framework for hyperspectral image classifica-
tion. By learning deep feature representations, their method captured both spectral
and spatial information, leading to enhanced classification accuracy. The study high-
lighted how unsupervised pre-training can address the lack of labeled hyperspectral
data.

The research by Kussul ef al. [Kussul et al., 2017] integrated deep learning models

with ensemble techniques for hyperspectral image classification. They focused on
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combining the outputs of multiple neural networks to boost robustness and accuracy.
Their results showed that deep ensemble methods outperform traditional classifiers

on complex hyperspectral datasets.

The research by Romero et al. [Romero et al., 2015] introduced an unsupervised
feature extraction method for hyperspectral data using deep learning. The method
involved training deep architectures to discover meaningful feature representations,
even without labeled samples, enabling more effective clustering and classification.
Zhao and colleagues [Zhao and Du, 2016] proposed a spectral-spatial deep learning
model that incorporates both spectral and spatial information for feature extraction.
Their framework outperformed existing methods by capturing spatial dependencies
and local spectral patterns in hyperspectral images, leading to superior classification

results.

Chen et al. [Chen et al., 2016] developed a deep CNN model tailored for fea-
ture extraction in hyperspectral image processing. Their approach emphasized spa-
tial feature learning through convolutional layers, which improved classification per-
formance on benchmark datasets by effectively handling the high-dimensional na-
ture of hyperspectral data. These works provide strong evidence that deep learning-
based methods are extensively used for hyperspectral image classification and feature
extraction. They illustrate how various deep architectures, including autoencoders,
CNNs, and ensemble techniques, have improved classification accuracy by capturing

spectral-spatial dependencies and handling high-dimensional data.

In particular, a Google research team has proposed a method for compressing im-
age data using a deep neural network [Toderici et al., 2017]. The authors propose
a model that employs a deep convolutional neural network (CNN) to analyze and
compress images. The architecture is designed to learn hierarchical representations
of the data, which allows for more effective encoding of image features compared to

conventional methods. One of the standout aspects of this approach is its end-to-end
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learning capability. The model can be trained directly on raw image data, enabling
it to learn optimal compression strategies based on the specific characteristics of the
images being processed. This results in a more tailored compression mechanism that

can adapt to various image types and contents.

The research emphasizes the importance of maintaining reconstruction quality
while achieving high compression rates. By utilizing the learned representations, the
model can generate high-fidelity reconstructions of the original images, even at lower
bit rates. This is particularly beneficial for applications where preserving visual qual-
ity is crucial. The method incorporates an iterative process that progressively refines
the compressed representation. This approach not only enhances compression effi-
ciency but also allows the model to focus on the most significant features of the image,

ensuring that essential details are preserved during the compression process.

The authors conduct extensive experiments to evaluate the performance of their
proposed method against existing compression techniques. The results demonstrate
that their deep learning-based approach outperforms traditional methods in terms of
both compression efficiency and visual quality of the reconstructed images. The re-
search conducted in this paper offers a significant contribution to the field of image
compression by employing deep neural networks to enhance compression efficiency
while maintaining high reconstruction quality. This approach marks a shift towards
adaptive methods of handling image data, which may lead to new developments in
various imaging technologies. Although deep learning-based compression techniques
show promise, their computational complexity and larger model sizes can limit prac-

tical implementation in hyperspectral image compression.

A study proposed the SSCNet, a fully convolutional autoencoder, for spectral sig-
nal compression [La Grassa et al., 2022]. SSCNet demonstrated superior performance
over traditional methods like JPEG2000 in both PSNR and SSIM metrics, highlight-

ing its ability to preserve high reconstruction quality across hyperspectral datasets
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such as the VIRTIS-Rosetta dataset. By replacing the traditional fully connected lay-
ers with convolutional layers, SSCNet reduces model complexity, improving training
efficiency and making it more suitable for high-dimensional data like hyperspectral

images (MDPI).

The HyCoT model introduces a transformer-based architecture for hyperspectral
image compression [Fuchs et al., 2024]. It employs multi-head self-attention to capture
long-range dependencies within spectral data and adapts efficiently to a variety of
compression ratios. The model’s lightweight decoder also makes it practical for real-
time applications, offering competitive rate-distortion performance compared to other

state-of-the-art methods like convolutional autoencoders [Fuchs et al., 2024].

Real-time hyperspectral image compression has become critical for remote sensing
applications using embedded GPUs, especially in satellite systems [Fuchs and Demir,
2023]. Efficient compression algorithms aim to balance speed and accuracy by lever-
aging the parallel processing capabilities of GPUs, enabling fast compression without
sacrificing reconstruction quality. This approach is ideal for handling large-scale data
streams from airborne and spaceborne sensors where transmission speed and storage

space are limited [Fuchs and Demir, 2023].

A recent study proposed a novel hybrid approach that integrates convolutional
neural networks (CNNs) with transformers to harness both local and non-local fea-
ture extraction capabilities [Liu et al., 2023]. These models can efficiently compress
hyperspectral data while maintaining high fidelity, offering a more effective solution
for complex tasks like anomaly detection and classification. This hybrid method repre-
sents a promising direction for task-aware hyperspectral image compression by com-
bining the strengths of both architectures [Liu et al., 2023]. The HySpecNet-11k dataset
has been used to benchmark various learning-based hyperspectral image compression
models. The results indicate that modern deep-learning techniques can achieve high

compression ratios with minimal loss in reconstruction quality. These techniques use
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task-specific compression strategies that adjust dynamically to the spatial or spectral
properties relevant to the task at hand, showcasing how adaptive methods can out-
perform traditional compression approaches [Fuchs and Demir, 2023, Liu et al., 2023].

Table 2.7 summarizes recent developments in Deep Learning-based techniques for
hyperspectral image compression. These approaches employ advanced neural net-
work architectures to automatically learn compact representations of hyperspectral
images. For instance, Kumar et al. [Kumar et al., 2018] propose an onboard hyperspec-
tral image compression technique that utilizes compressed sensing and deep learning
to meet the limited hardware constraints of space missions. In this study, the onboard
technique refers to real-time hyperspectral image compression and processing per-
formed directly on satellites or airborne sensors before data transmission, reducing
bandwidth and storage requirements. This method involves a lightweight encoder
onboard satellites and a deep learning-based decoder on the ground, enabling effi-

cient data reconstruction with reduced transmission requirements.

Table 2.7: Related Work on Deep Learning-Based Approaches

Year Paper Details Datasets
2018 Onboard Proposes a real-time onboard compression Pavia
hyperspectral image scheme.

compression using
compressed sensing

and deep learning

[Kumar et al., 2018]

Continued on next page
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Table 2.7 — continued from previous page

Year Paper Details Datasets
2019 Hyperspectral image | Proposes a low-rank tensor completion EUROSAT
compression and scheme for image compression.

super-resolution
using tensor
decomposition

learning [Aidini et al.,

2019]
2020 Autoencoder-based Uses convolutional neural networks for HSI Pavia
dimensionality compression.

reduction and
classification using
convolutional neural
networks for
hyperspectral images

[Ramamurthy et al.,

2020]

2021 Convolution Neural Proposes a lossy hyperspectral image Indian Pines,
Network based lossy | compression algorithm based on the concept Pavia
compression of of autoencoders. University

hyperspectral images

[Dua et al., 2021]
2021 Learned Proposes a trainable network architecture for | Pavia, Cave
Hyperspectral hyperspectral compression.

Compression Using a
Student’s T

Hyperprior [Guo

etal., 2021]

Continued on next page
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Table 2.7 — continued from previous page
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Compressed
Hyperspectral Image
Using SqueezeNet
Coupled Dense
Attentional Net

[Mohan et al., 2023]

compression and reconstruction of
hyperspectral images using deep learning

techniques.

Year Paper Details Datasets

2022 Hyperspectral Data Proposes a spectral signals compressor VIRTIS-
Compression Using network based on deep convolutional Rosetta
Fully Convolutional autoencoder (SSCNet).

Autoencoder
[La Grassa et al., 2022]

2022 Edge-Guided Proposes an HSI compression network Pavia, Cave
Hyperspectral Image | embedded with an edge extraction network,
Compression With which can be jointly optimized.

Interactive Dual
Attention [Guo et al.,
2022]

2022 Hyperspectral image | Utilizes transposed deconvolution in AVIRIS
compression using convolutional neural networks to produce
convolutional neural | significant artifacts in decompressing
networks with local low-variance images.
spectral transforms
and non-uniform
sample normalization
[Verdu et al., 2022]

2023 Reconstruction of Addresses image denoising alongside the AVIRIS

Continued on next page
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Year

Paper

Details

Datasets

2023

Hyperspectral Image
Compression via
Cross-Channel
Contrastive Learning

[Guo et al., 2023]

Proposes a hyperspectral compression

network via contrastive learning (HCCNet).

Pavia, Cave

2023

HySpecNet-11k: a
Large-Scale
Hyperspectral Dataset
for Benchmarking
Learning-Based
Hyperspectral Image
Compression
Methods [Fuchs and
Demir, 2023]

Presents HySpecNet-11k, a large-scale

hyperspectral benchmark dataset.

HySpecNet-
11k

2024

HyCoT: A
Transformer-Based
Autoencoder for
Hyperspectral Image
Compression [Fuchs

et al., 2024]

Proposes Hyperspectral Compression

Transformer (HyCoT), a transformer-based

autoencoder for pixelwise HSI compression.

HySpecNet-
11k

Ramamurthy ef al. [Ramamurthy et al., 2020] developed a CNN-based approach

for dimensionality reduction in hyperspectral images, enhancing both compression

and classification performance. Their model extracts relevant spectral and spatial fea-

tures, improving downstream analytics tasks.

Recent work by Guo et al. [Guo et al., 2021] introduces a Student-t hyperprior

model for hyperspectral image compression, combining probabilistic modeling with

trainable neural networks. Their method achieves efficient compression by capturing
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the latent distribution of hyperspectral data, providing superior performance com-
pared to conventional approaches. These deep learning techniques provide powerful
tools for managing the high-dimensional nature of hyperspectral data by automati-
cally capturing key features and reducing redundant information.

Our work falls under the category of deep learning-based hyperspectral image
compression methods. Unlike conventional approaches that rely on handcrafted com-
pression techniques, we leverage deep neural networks to learn compact and task-
relevant representations of hyperspectral data. Our method integrates implicit neural
representations (INRs), which enable adaptive encoding by focusing on spectral and
spatial features that are most critical for downstream tasks such as classification, tar-
get detection, and anomaly detection. By utilizing these learning-based techniques,
our approach ensures that essential information is preserved while achieving high
compression efficiency. This aligns with recent advancements in deep learning-based
hyperspectral compression, demonstrating the potential of neural networks in opti-

mizing storage and transmission while maintaining reconstruction quality.

2.4.8 Task-aware Hyperspectral Image Compression

Task-aware compression has emerged as an innovative approach to address the lim-
itations of traditional hyperspectral image (HSI) compression methods, which often
fail to prioritize specific information essential for certain tasks, such as classification
or target detection. Traditional compression methods, whether lossless or lossy, typi-
cally apply uniform compression across all parts of an image without considering the
end task, potentially leading to unnecessary loss of critical information. Task-aware
compression, on the other hand, introduces an adaptive methodology where regions
or spectral bands of the image that are more critical to the task at hand are preserved
with higher fidelity, while less relevant regions undergo more aggressive compression.

One key aspect of task-aware compression is region-aware processing, where dif-
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ferent regions of the image are compressed at different rates based on their importance
for the task. For example, in target detection tasks, regions containing the target ob-
jects are compressed with minimal loss, while other regions are subjected to greater
compression. This region-based strategy can be extended to spectral bands in hyper-
spectral data. Hyperspectral images contain hundreds of contiguous spectral bands,
not all of which contribute equally to every task. For instance, certain spectral bands
may be more crucial for identifying specific materials, while others can be compressed
more heavily without affecting the task performance.

Deep learning methods have further advanced task-aware compression. Neural
networks, particularly convolutional neural networks (CNNs) and transformers, can
be trained to learn which spatial or spectral features are most important for a given
task and to apply adaptive compression accordingly. These methods use supervised
or unsupervised learning techniques to minimize the impact of compression on task-
specific metrics such as classification accuracy or detection precision. Implicit neural
representations (INRs) have also been explored, encoding hyperspectral data as con-
tinuous functions that can be adaptively sampled and reconstructed based on task-
specific requirements [Yu, 2024, Ye et al., 2023].

Ye et al. [Ye et al., 2023] demonstrated the effectiveness of task-aware compres-
sion for image restoration tasks by optimizing compression parameters for super-

resolution and denoising, ensuring that critical regions maintain high fidelity.

2.4.8.1 Challenges and Future Directions

While task-aware compression has shown significant promise, several challenges re-
main to fully realize its potential. One of the main challenges is the computational
complexity involved in adapting compression parameters based on task-specific re-
quirements. While effective deep learning-based methods require extensive computa-

tional resources for both training and inference, in hyperspectral image compression,
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the number of spectral bands and the spatial resolution contribute to enormous data
size, making real-time or near-real-time processing difficult, especially for applica-
tions with constrained hardware resources, such as satellite imaging [Rezasoltani and

Qureshi, 2023b].

Another challenge is generalization across different tasks. Most task-aware meth-
ods are designed with a specific task in mind, such as classification or anomaly de-
tection, but these methods may not perform well when applied to other tasks. For
example, a compression model optimized for classification may not be as effective for
target detection or spectral unmixing, and vice versa. Developing generalized models
that can adapt to multiple tasks without sacrificing performance remains an area of

active research [Fuchs et al., 2024].

There is also the issue of data availability. Many deep learning-based methods
require large amounts of labeled data for training, which is often not available for
hyperspectral images. Acquiring ground-truth labels for hyperspectral data is both
time-consuming and costly, limiting the scalability of task-aware methods. Techniques
such as transfer learning and active learning have been explored as potential solutions
to mitigate the data bottleneck, but these approaches also come with their own chal-

lenges [Fuchs et al., 2024, Yu, 2024].

Several research directions could enhance the effectiveness and applicability of
task-aware hyperspectral image compression. Hybrid compression techniques, com-
bining traditional and learning-based methods, could offer a balance between compu-
tational efficiency and task-specific adaptability. Additionally, hardware-accelerated
compression approaches that leverage GPUs or specialized hardware like FPGAs
could enable real-time processing for spaceborne or airborne sensors, where rapid

data transmission and storage are critical [Altamimi and Ben Youssef, 2021].
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2.4.8.2 Afterthought

Task-aware hyperspectral image compression represents a significant advancement
in the field of remote sensing and data processing. By prioritizing the retention of
information most relevant to the task at hand, these methods offer a more efficient
solution to the challenges posed by the large size and complexity of hyperspectral
data. The integration of deep learning techniques, particularly CNNs, transformers,
and INRs, has further enhanced the potential of task-aware compression, enabling
adaptive, task-specific data handling that improves performance in applications such
as classification, detection, and spectral unmixing.

However, the path forward involves overcoming several key challenges, including
computational complexity, the need for task generalization, and the limited availabil-
ity of labeled data. As research in this area continues to evolve, we can expect to
see the development of more efficient, scalable, and task-adaptive compression tech-
niques. These advancements will be crucial for unlocking the full potential of hyper-
spectral imaging in a wide range of applications, from environmental monitoring and
agriculture to military surveillance and space exploration.

By refining and expanding these methods, researchers can contribute to the grow-
ing demand for hyperspectral data processing solutions that are both efficient and
adaptable to the specific needs of various tasks. Task-aware hyperspectral image com-
pression stands poised to play a central role in the future of remote sensing and be-

yond.

2.5 Summary

In this chapter, we reviewed various approaches to hyperspectral image compres-
sion, spanning from classical transform-based and predictive coding techniques to

modern deep learning-driven methods. Among these, deep learning-based methods
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have shown significant promise in efficiently compressing hyperspectral images while
maintaining high reconstruction quality. These methods leverage advanced neural ar-
chitectures to learn compact, task-relevant representations, which can be highly bene-
ficial in preserving critical spectral and spatial information. However, computational

complexity remains a major challenge for real-time applications.

Furthermore, we discussed the emerging paradigm of task-aware hyperspectral
image compression, which tailors compression strategies to the specific needs of
downstream tasks such as classification and target detection. Unlike traditional meth-
ods that apply uniform compression across all spectral bands and spatial regions,
task-aware approaches selectively allocate higher fidelity to important regions while
aggressively compressing less relevant areas. This technique enhances the efficiency
of hyperspectral imaging applications by preserving the most informative aspects of

the data.

Our proposed method integrates deep learning techniques and extends them to
task-aware compression. By investigating the central problem of deep learning-based
compression, specifically the challenge of compression time, we aim to develop a
method that balances compression efficiency and computational cost. The use of im-
plicit neural representations (INRs) in our approach allows for adaptive encoding and
improved flexibility in handling hyperspectral data. This method addresses key chal-
lenges in hyperspectral image compression while contributing to advancements in

task-aware compression strategies.

In summary, deep learning has revolutionized hyperspectral image compression
by enabling high-performance encoding and reconstruction techniques. Task-aware
compression further refines this process by ensuring that essential spectral and spatial
information is preserved for specific applications. Future research directions should
focus on optimizing computational efficiency, improving real-time processing capa-

bilities, and developing more adaptive compression frameworks that are generalized
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to different tasks.
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Chapter 3

Benchmarks & Evaluation Metrics

Hyperspectral image compression is a crucial step in efficiently handling hyperspec-
tral datasets while preserving essential spectral and spatial information. Given the
high dimensionality of hyperspectral images, effective compression techniques must
balance storage efficiency and image fidelity, ensuring that the compressed data re-
mains useful for various downstream applications such as remote sensing, environ-
mental monitoring, and medical imaging. In this chapter, we evaluate our proposed
compression approach using widely studied hyperspectral datasets. We present the
evaluation metrics used to quantify the compression performance, including both
distortion-based metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM), as well as compression efficiency metrics like bits-per-pixel-
per-band (bpppb). The subsequent sections detail the datasets utilized for evaluation

and describe the quantitative measures employed to assess the quality of compression.

3.1 Datasets

We have used four datasets to evaluate our approach: Indian Pines, Jasper Ridge,
Pavia University, and Cuprite. We have chosen these datasets since they have been

utilized in prior research on hyperspectral image compression. The Indian Pines,
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Cuprite, and Jasper Ridge datasets were acquired using NASA’s Airborne Visible/In-
frared Imaging Spectrometer (AVIRIS) sensor. The AVIRIS sensor collects geometri-
cally coherent spectroradiometric data for the characterization of the Earth’s surface.
The Pavia University dataset was acquired via the ROSIS (Reflective Optics System

Imaging Spectrometer).

The Indian Pines dataset, which was collected in 1992, is one of the most widely
used hyperspectral images for remote sensing and classification research. It consists
of 145 x 145 pixels with 220 spectral bands covering the 0.4°2.5 ym wavelength range
in the visible and infrared spectrum. The dataset was collected in 1992 using NASA’s
AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor over Northwest In-
diana, USA. This region is primarily agricultural land, with fields of corn, soybeans,
wheat, alfalfa, and pastures interspersed with forested areas, roads, and urban struc-
tures. The dataset contains 16 ground-truth classes representing different types of
crops and land covers, such as corn-no-till, corn-minimum till, corn-clean, soybean-
no-till, soybean-minimum till, soybean-clean, wheat, woods, buildings, and grass pas-
tures. Due to its diverse land cover, the Indian Pines dataset is widely used in hyper-

spectral image classification, anomaly detection, and compression research.

The Jasper Ridge dataset, which was obtained in 1998, is another well-known hy-
perspectral benchmark with dimensions 100 x 100 pixels and 224 spectral bands cov-
ering the 0.42.5 ym wavelength range. Like Indian Pines, it was also acquired using
the AVIRIS sensor, but it covers an area in Jasper Ridge Biological Preserve in Cali-
tfornia, USA. This region is known for its diverse natural vegetation, including grass-
lands, chaparral, deciduous forests, and mixed coniferous forests. Additionally, the
dataset contains geological formations and soil types, making it valuable for both eco-
logical monitoring and geological analysis. Jasper Ridge is commonly used in research

related to land cover classification, species mapping, and ecosystem studies.

The Pavia University dataset, which was recorded more recently in 2001, is a hy-



CHAPTER 3. BENCHMARKS & EVALUATION METRICS 98

Figure 3.1: The datasets used in this thesis are represented using pseudo-colors. The
following datasets are referred to as L2R: Indian Pines, Jasper Ridge, Pavia University,
and Cuprite.

perspectral image captured by the ROSIS-03 (Reflective Optics System Imaging Spec-
trometer) sensor during an airborne campaign conducted by the German Aerospace
Centre (DLR) over the University of Pavia, Italy. The dataset has dimensions 610 x 340
pixels with 103 spectral bands, covering the 0.43°0.86 pm spectral range in the visible
and near-infrared (VNIR) regions. The image primarily consists of urban landscapes,
including buildings, asphalt roads, meadows, gravel surfaces, trees, metallic objects
(e.g., rooftops), shadows, and water bodies. It is often used for urban land cover clas-

sification, spectral unmixing, and target detection.

The Cuprite dataset, which was captured in 1997, is a well-known hyperspectral
image in geological mapping and mineral exploration studies. It was captured using
the AVIRIS sensor over the Cuprite mining district in Nevada, USA, and has a spatial
resolution of 614 x 512 pixels with 224 spectral bands. The Cuprite region is famous
for its rich mineralogical diversity, and the dataset contains abundant hydrothermally
altered minerals, including kaolinite, alunite, buddingtonite, hematite, calcite, mus-
covite, montmorillonite, and quartz. This dataset is widely used for mineral classifi-

cation, geological surveys, and remote sensing applications in Earth sciences.

Figure 3.1 provides a visual representation of the four datasets used in this study:
Indian Pines, Jasper Ridge, Pavia University, and Cuprite. Each dataset is depicted us-

ing pseudo-color images to highlight their unique spectral and spatial characteristics.
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The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is one of the most
widely used instruments for acquiring high-quality hyperspectral data from airborne
platforms. Developed by NASA’s Jet Propulsion Laboratory, AVIRIS employs a
"whisk broom" scanning mechanism and captures reflectance data across 224 contigu-
ous spectral bands, ranging from the visible to shortwave infrared (400-2500 nm).
The instrument uses Silicon (Si), Indium Gallium Arsenide (InGaAs), and Indium An-
timonide (InSb) detectors to cover the visible, near-infrared, and shortwave infrared
regions, respectively. With a 34-degree field of view and 1 milliradian instantaneous
tield of view (IFOV), AVIRIS provides fine spatial and spectral resolution critical for
remote sensing applications. It features liquid nitrogen-cooled detectors to reduce

thermal noise and maintains a channel bandwidth calibrated to within 1 nm.

Figure 3.2 illustrates the internal structure and configuration of the AVIRIS sensor,
highlighting its key components, including the spectrometer, scan drive, tape recorder,
and optical fibers. This level of instrumentation allows AVIRIS to collect detailed hy-
perspectral data suitable for environmental monitoring, mineral mapping, vegetation

analysis, and more.

In Chapter 5, in addition to standard benchmark datasets such as Indian Pines,
Pavia University, Jasper Ridge, and Cuprite, we evaluate our method on a large-
scale hyperspectral dataset acquired by a high-resolution airborne imaging spectrom-
eter. This dataset, referred to as Strip 4, contains 6708 x 4192 spatial pixels and 270
spectral bands, and was acquired as part of an internal aerial hyperspectral imaging
project. The data was collected using a high-resolution pushbroom sensor during a

high-altitude flight.

This large dataset is not publicly hosted, but it was made available to our lab
through a collaborative agreement. Upon request, and with proper authorization,
researchers may access the dataset. A visual representation of this dataset is provided

in Figure 3.3, where a single representative band is shown.
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Figure 3.2: Schematic diagram of the AVIRIS (Airborne Visible/Infrared Imaging
Spectrometer) instrument. Key components include the spectrometer, scan drive, op-
tical fibers, gyros, and the tape recorder system. The "whisk broom" scanning mech-
anism enables the acquisition of hyperspectral data across a wide field of view with
high spectral resolution. (Image source: NASA /JPL AVIRIS instrument documenta-
tion.)
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Figure 3.3: Visualization of the dataset used in this study, consisting of images with
dimensions 4192 by 6708 pixels and 270 channels. The dataset has a total size of 28.2
GB.

3.2 Metrics for Measuring Compression Quality

To evaluate the performance of the proposed hyperspectral image compression
method, we employ three widely used metrics: Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM), and Bits-Per-Pixel-Per-Band (bpppb). These met-
rics allow for a quantitative comparison between the original and compressed images,
ensuring that compression achieves a balance between high quality and efficient stor-

age.

3.2.1 Peak Signal-to-Noise Ratio (PSNR)

Similar to previous studies, we use the Peak Signal-to-Noise Ratio (PSNR) to compare
the proposed method with other methods. PSNR, measured in decibels, is a frequently
used metric in image compression. It measures the difference in “quality” between

the original image and its compressed version. Higher PSNR values suggest that the
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compressed image is more similar to the original image, i.e., the compressed image
preserves more of the information present in the original image and that it has higher

quality.

PSNR is computed using the Mean Squared Error (MSE), which measures the cu-
mulative pixel-wise error between the original and compressed images. Lower MSE

values indicate better reconstruction quality.

MSE is computed as follows:

MSE = ZM, (3.1)

1

where I and I denotes the original and compressed images, respectively, and i indices

over the pixels. MSE is used to calculate PSNR as follows:

RZ

where R is the largest variation in the input image in Equation 3.2. For instance, R is
1 if the input image is of double-precision floating-point data. R is 255, for instance, if

the data is an 8-bit unsigned integer image.

3.2.2 Structural Similarity Index (SSIM)

Another metric that is commonly used for image compression studies is the struc-
tural similarity index (SSIM) [Wang et al., 2004]. SSIM accounts for the structural
information that the human visual system is naturally attuned to. Therefore, SSIM is
perceptually more meaningful than MSE, at least for RGB images, which treat pixels

independent of each other. SSIM metric combines luminance, contrast, and structure,



CHAPTER 3. BENCHMARKS & EVALUATION METRICS 103
and the channel-wise SSIM is computed as follows:

Qurur + C) Qo + C)

SSIM hannel-wise = ’
channel-wise (‘u% + ‘u% + Cl)(O.IZ + Ulg + CZ)

(3.3)

where y; and y; are mean intensity values for the original image and its reconstruc-
tion, respectively. Similarly, 07 is the variance of the original image and o0, is the
covariance value for the original image and its reconstruction. C; = (k;.L)? and
C = (kz.L)2 are there to address division by a weak denominator. L, here, denotes the
dynamic range of a pixel and K; = 0.01 and K, = 0.03. Dynamic range L is typically

expressed as 2(Pits per pixel)

Mean SSIM value is computed by averaging channel-wise SSIM values. SSIM val-
ues range between 0 and 1, and larger SSIM values indicate a better reconstruction.
While PSNR captures the numerical accuracy of the reconstruction, SSIM measures
its perceptual quality. In the context of hyperspectral image compression, where both
signal fidelity and structural integrity are important, using both PSNR and SSIM offers

a more comprehensive evaluation of compression performance.

3.2.3 Bits-Per-Pixel-Per-Band (bpppb)

In addition, the number of bits-per-pixel-per-band (bpppb) captures the level of com-
pression achieved by a model. Lower values of bpppb indicate higher compression
rates. The value of bpppb for an uncompressed HSI is 8 or 32, depending on how the
pixels are stored. It is common to store the HSI pixel value (for each channel) as a

32-bit floating point. The parameter bpppb is calculated as follows:

#parameters x (bits per parameter)
(pixels per band) x #bands

bpppb = (3.4)
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This metric is crucial for assessing the trade-off between compression ratio and image
fidelity, ensuring that HSI compression achieves the desired balance between storage
efficiency and minimal loss of information.

In Equation (3.4), the term parameters refers to the total number of trainable pa-
rameters in the model used to represent the hyperspectral image. The bits per pa-
rameter indicate the numerical precision used to store each parameter (e.g., 32 bits for
single-precision floating-point representation). The pixels per band corresponds to the
spatial resolution of each spectral band (i.e., the number of pixels in a single 2D image
slice of the hyperspectral cube), while bands denotes the number of spectral bands in
the dataset. Note that in hyperspectral imaging, the terms band and channel are often

used interchangeably to refer to individual spectral slices of the hyperspectral cube.

3.3 Summary

This chapter discusses the datasets and the metrics used to evaluate our work perfor-
mance. These datasets and metrics provide a foundation for assessing the effective-
ness of the proposed methods. As we analyze and compare our results, we will refer

to them in subsequent chapters.



Chapter 4

HSI Compression using INR

Hyperspectral image compression is essential for efficient storage and transmission
of high-dimensional spectral data, particularly in applications such as remote sens-
ing, environmental monitoring, and medical imaging. Traditional compression tech-
niques, including transform-based methods and predictive coding, often struggle to
balance high compression rates with minimal loss of information. Recently, implicit
neural representations (INRs) have emerged as a promising alternative for compress-
ing high-dimensional data by leveraging neural networks to encode images as con-
tinuous functions. In this chapter, we introduce an INR-based compression approach
that models hyperspectral images using multi-layer perceptrons (MLPs) with periodic
activation functions. Unlike conventional compression schemes, this method does not
rely on explicit pixel-wise storage but instead learns a neural representation of the hy-
perspectral data. We describe the theoretical foundations of INR-based compression,
detail the architecture of the proposed method, and present experimental evaluations
demonstrating its effectiveness compared to traditional and learning-based compres-

sion techniques.
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4.1 Image Compression using INRs

Let us consider a w-by-h grayscale image. We can represent this image as a function

I

grayscale - u— [01 1]/

where

U={(xy)|xe{l,...,w},ye{l,... h}}

This notation captures the intuition that an image is a function over a 2d grid that de-
fines the pixel locations. The intensity at each pixel is then Iy ayscale (x,y). Itis straight-

forward to extend this notation to hyperspectral image I as follows

L : U [0,1]
I= : . (4.1)

I.: U~ [0,1]

Here for the sake of simplicity, we assume a w-by-h hyperspectral image comprising ¢
channels. Using this notation, we can find the spectral signature of the pixel at location

(x,y) € U as follows:
{L(xy), - (2 )}

Given this setup, it is possible to imagine a neural network that models the functions
Iy, - - -, I.. Specifically, work on implicit neural representations suggests using a mul-
tilayer perceptron (MLP) with periodic activation functions to represent functions of
the form shown in Equation 4.1. Consider an MLP fg with parameters © that maps

locations in U to pixel spectral signatures:

fo:U—{L, -, I}



CHAPTER 4. HSI COMPRESSION USING INR 107

w | h|c|n,| wy|q C
#bits | 16 |16 |16 | 8 | 8 | 1| bpp X ne

Table 4.1: Disk layout for Iencodeq- Here g denotes if parameters ® were quantized at
compression time. bpp (or #bits-per-parameter) is either 32 or 16.

Under this regime, training can be defined as
0= argm@%nﬁ(l,f@),

Where L is a loss function that is differentiable and that captures the error between
the original hyperspectral image and the decompressed hyperspectral image. We use
the mean-squared error to compute this loss. Given O, it is possible to reconstruct
the original image I by sampling f at the relevant locations. Parameters O, along
with w, h, and ¢, plus the structure of the MLP, represent an encoding Iecoded Of the
hyperspectral image I that was used to train the MLP fg. It is expected that the mem-
ory required to store Iencoded iS an order of magnitude less than the memory needed
to store the hyperspectral image. The decompression process requires constructing
the sampling locations U, setting up MLP fg and initializing its weights to ©, and

evaluating f at locations in U.

4.2 Compression Pipeline

The proposed compression method consists of two steps. Step 1 performs an architec-
ture search. The goal here is to find an MLP that achieves the highest reconstruction
accuracy for a given bpppb budget. Architecture search is performed by overfitting
multiple MLPs having different numbers of hidden layers and hidden layers” widths
to the hyperspectral image. Architecture search, however, means longer compression
times. Step 2 involves quantizing and storing the parameters of the overfitted MLP

to disk. The caveat here is that this further reduces the quality of the reconstructed
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image.

4.2.1 Opvertfitting a SIREN network

The compression procedure comprises overfitting a SIREN network fg to a hyper-
spectral image I [Dupont et al., 2021]. The width w and height & of the hyperspectral
image are used to set up an input location grid on [—1, +1] x [—1,+1], and the MLP
is trained to reconstruct a pixel’s spectral signature given its location. The parameters
O of this overfitted MLP are quantized as ®. MLP structure that contains the num-
ber of hidden layers n;, widths of these layers wj,, and the width w, height &, and the
number of channels ¢ of the original hyperspectral image I along with © serve as a
compressed encoding lencoded Of the hyperspectral image I (Table 4.1). Parameters ¢)
are either stored as 32-bit floats or as 16-bit floats. Training and inference require 32-bit
floats, and quantization/dequantization is performed to move between 32 and 16 bits

representations. We have yet to try an 8-bit, fixed-point representation for parameters.

The overfitted MLP contains
(wp x 2) + (wy, x wy) "~V + (¢ x wy) (4.2)

parameters.

4.2.2 Decompressing lencoded

The hyperspectral image is reconstructed from its compressed encoding Ioncoded S
follows: 1) use ny, wy, and c to reconstruct fg, 2) dequantize O to © and use it to
initialize the parameters of fg, 3) use the width w and height & to set up the input grid
between [—1,+1] x [—1,+1], and 4) evaluate fg at each location in the input grid to

reconstruct the image I.
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4.3 Algorithm for Hyperspectral Image Compression

Using INR

This section presents the detailed algorithm used for hyperspectral image compres-
sion using implicit neural representations (INRs). The algorithm involves training a
multilayer perceptron (MLP) with periodic activation functions to overfit a hyperspec-
tral image, quantizing the learned parameters, and storing them efficiently to allow
fast decompression. Below, we provide a high-level pseudocode that outlines the core

steps involved in the method.

4.3.1 Pseudocode of the Proposed Method

Algorithm 1 HSI Compression Using Implicit Neural Representations (INR)

1: Input: Hyperspectral image I with dimensions (w, I, c¢)

2: Output: Compressed encoding Iencoded = 10, 114, Wy, w, h, ¢}

3: Step 1: Architecture Search (Using a Subset of the Image)

4: Uniformly sample a fixed, non-overlapping subset S C U (e.g., 5% of pixel coor-
dinates), without replacement

5. for each candidate MLP structure (1, w;,) do

: Initialize MLP fg with sinusoidal activations; Train fg to minimize loss

L(I, fe) using only S

7: Compute PSNR for the reconstructed subset I5

8: if PSNR meets the required threshold then

9: Select the best (1, wy,) for the final MLP; Break

10: Step 2: Model Fitting and Compression

11: Train the selected MLP fg on the entire hyperspectral image I; Quantize parame-
ters @ — O (32-bit to 16-bit)

12: Store the compressed encoding Iencoded = {©, 1y, Wy, w, h, ¢}

13: Step 3: Decompression

14: Load © and dequantize to ®; Initialize MLP fg with dequantized parameters

15: Generate input grid U for (w, h) within [—1,1] x [-1,1]

16: for each coordinate (x,y) € U (total: w x h locations) do

17 Compute pixel value y = fg(x,y)

18: Reconstruct the hyperspectral image I
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The above algorithm describes the full pipeline for hyperspectral image compres-
sion and decompression. In the following, we explain each stage of the algorithm
to provide a deeper understanding of the workflow and practical implications of the

method.

* Architecture Search: In the first step, we perform a search over different MLP
architectures with varying numbers of hidden layers and layer widths. Each
candidate MLP is trained on a fixed subset S of the hyperspectral image. The
subset S is selected by uniformly sampling a fixed proportion of the pixel coor-
dinates from the full spatial grid U, without replacement. This sampling strategy
ensures computational efficiency during architecture search while preserving a
representative view of the spatial and spectral variability of the image. The same
subset S is used across all candidate architectures, ensuring consistent evalua-

tion and avoiding repetition or overfitting to specific regions.

* Model Fitting and Compression: Once the best architecture is chosen, the MLP is
trained on the entire hyperspectral image. The resulting parameters © are then
quantized to a lower precision (e.g., from 32-bit floats to 16-bit). This quantiza-
tion helps reduce the storage size while maintaining acceptable reconstruction

quality.

* Decompression: During decompression, the quantized parameters are loaded
and dequantized back to 32-bit precision. The MLP is then used to predict pixel
values at each coordinate of the input grid, reconstructing the hyperspectral im-

age with minimal distortion.

This pseudocode encapsulates the essence of our approach, demonstrating how
a complex hyperspectral image can be effectively compressed using neural network
models. The structure of the MLP and the quantization scheme are essential elements

that influence both the compression ratio and the reconstructed image quality.
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4.3.2 Discussion

This algorithm offers several advantages over traditional methods, including efficient
storage through parameter quantization and fast decompression through neural rep-
resentations. However, the architecture search stage can be time-consuming, and there
is a trade-off between compression time and reconstruction quality. Future research
could explore ways to optimize the search process and further enhance storage effi-
ciency.

By following this algorithm, we achieve a robust and scalable method for hyper-
spectral image compression, making it well-suited for applications such as remote

sensing, environmental monitoring, and medical imaging.

4.4 Ablative Study

Similar to previous studies, as mentioned in the chapter 3, we use Peak Signal-to-
Noise Ratio (PSNR) to compare the proposed method with JPEG, JPEG2000, and PCA-
DCT approaches for hyperspectral image compression. JPEG method for hyperspec-
tral image compression uses JPEG standard to encode each channel (band) separately.
JPEG2000, instead, uses the JPEG2000 standard for encoding the hyperspectral image.
It, too, treats each channel separately. PCA-DCT uses PCA-based analysis to reduce
the number of channels, followed by a DCT-based method for encoding these chan-
nels. PCA-DCT method posts low signal-to-noise ratios; however, this can be fixed
somewhat by keeping more of the original channels. We have chosen these hyper-
spectral image compression techniques since they are widely used for reducing the
size of hyperspectral data in hyperspectral analysis pipelines. In the second part, we
also compare our results with JPEG, JPEG2000, PCA-DCT, PCA-JPEG2000, MPEG,
X264, X265, PCA-X264, PCA-X265, FPCA-JPEG2000, 3D-DCT, 3D-DWT-SVR, WSRC,
HEVC, RPM, and 3D-SPECK.



CHAPTER 4. HSI COMPRESSION USING INR 112

The datasets used to evaluate our approach, along with their detailed descriptions,
are provided in Chapter 3. These datasets—Indian Pines, Jasper Ridge, Pavia Univer-
sity, and Cuprite—have been widely utilized in prior studies on hyperspectral image
compression due to their diverse spectral and spatial properties. The datasets were
collected using advanced sensors such as NASA’s Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS) and the ROSIS-03 aerial instrument, supporting research
across various domains, including agriculture, land use, environmental monitoring,
and geoscience.

Figure 4.1 plots PSNR vs. bpppb for the four datasets that we are using in this
work. The plots confirm our intuition that higher bpppb leads to better compression
quality as measured by PSNR values. For our method, bpppb calculations do not

include the storage required to keep network structures.

4.4.1 Architecture Search

Given an image and our (MLP) parameter budget, which is measured in bits per pixel
per band, or bpppb for short, the first goal is to select the MLP structure—i.e., the
number of hidden layers and their widths—that is able to represent this image with
an acceptable PSNR value. Figure 4.2 shows PSNR values achieved for different archi-
tectures for the four datasets having a fixed bpppb budget. This suggests that network
structure, in addition to network capacity, affects how well a network represents the
hyperspectral image.

MLP structure is chosen via hyperparameter search, which involves training fea-
sible designs containing the right number of hidden layers having the correct width
on a given hyperspectral image. The result of this process is a single MLP that is able
to reconstruct the hyperspectral image with the desired PSNR value. The parameters
of the final MLP are then quantized to 16-bit precision, which leads to further savings

in terms of the storage needed to represent the hyperspectral image. Our experiments
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Figure 4.1: Model capacity. PSNR vs. bpppb for (L2R) Indian Pines, Jasper Ridge,
Pavia University, and Cuprite datasets. The trend of these plots confirms our intuition
that PSNR values increase as bpppb numbers are increased. The plots are not mono-
tonically non-decreasing due to the stochastic nature of MLP overfitting.
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suggest that reducing the MLP parameters from 32-bit to 16-bit precision did not in-

crease distortion and that it had little effect on the signal-to-noise ratio.

4.4.2 Comparison with other methods

Figure 4.3 shows PSNR values at various compression rates for different methods.
Specifically, we compare our approach, labeled as ours and hp_ours, with JPEG,
JPEG2000, and PCA-DCT methods. Here, ours method stores MLP weights as 32-bit
floating point values, whereas hp_ours stores MLP weights at half-precision as 16-bit
floating point values that are constructed by quantizing the MLP weights. These plots
illustrate that our methods achieve higher compression quality, i.e., better PSNR, for
a given value of bpppb. This is especially true for lower bpppb values.

For the Indian Pines dataset, ours method achieves better PSNR up to around 0.7
bpppb, at which point JPEG2000 obtains better PSNR. What is curious is that the PSNR
for hp_ours drops drastically at around 0.4 bppb. This merits further investigation. One
possible explanation is the effect of weight quantization. In our implementation, we
quantize the network weights from 32-bit to 16-bit floating-point precision to reduce
storage. However, this quantization may result in a loss of critical information, partic-
ularly for weights that fall outside the representable range of 16-bit floating point. In
PyTorch’s 16-bit format (FP16), precision is sacrificed to gain a broader dynamic range,
and values outside the representable range may be clipped or rounded, potentially de-
grading the network’s ability to accurately reconstruct high-fidelity representations at
lower bit rates. For Jasper Ridge, hp_ours performs better than ours. However, both
ours and hp_ours achieve higher PSNR values than other methods. For Pavia Univer-
sity and Cuprite datasets, our method obtains better PSNR values than other methods.

We draw the following conclusions from these results: 1) the proposed method,
both ours and hp_ours, perform high-quality compression at high compression rates;

2) it is beneficial to perform architecture search plus examine the effects of quantiza-
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Figure 4.2: Architecture search. Exploring MLP structure that achieves the best PSNR
for different datasets (for a fixed bpppb budget). For our purposes, the MLP structure
is defined by the number of hidden layers and the width of these layers. Together, the
number and width of the hidden layers define network capacity.
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tion at compression time since on some datasets hp_ours outperforms ours; and 3) the
compression quality obtained by the proposed method compares favorably with the

three commonly used compression methods for hyperspectral images.
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Figure 4.3: Compression results. PSNR values achieved at various bpppb for our
method, along with those obtained by JPEG, JPEG2000, and PCA-DCT schemes.
“Ours” refers to our method where parameters are stored at 32-bit precision, and
“HP_ours” refers to results when parameters are stored at 16-bit precision.
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4.4.3 Encoding Considerations

Our method belongs to the class of “slow-encoding-fast-decoding” compression
methods. The method needs to train, actually overfit, multiple MLPs at encoding (com-
pression) time. This is needed to find the MLP structure that best represents the hyper-
spectral image given a particular storage budget. Decoding, however, only requires
evaluating this MLP at various pixel locations. Decoding is fast. It can be made even
faster by exploiting the parallelism inherent to this procedure. The “slow-encoding-
fast-decoding” nature of this method makes it particularly suitable for applications

where the hyperspectral image is compressed once only, say at capture time.

We show an example of the overfitting procedure in Figure 4.4. These plots show
the encoding procedure on the four datasets: (1) Indian Pines at 0.2 bpppb; (2) Jasper
Ridge at 0.15 bpppb; (3) Pavia University at 0.025 bpppb; and (4) Cuprite at 0.02
bpppb. JPEG, JPEG2000, and PCA-DCT methods do not require iterations. Conse-
quently, their respective PSNR values are denoted with the horizontal dashed lines.
The method proposed in this thesis is iterative. Note that PSNR values for HP_ours
continue to increase with the number of iterations (up to a point). Improvement in
PSNR values saturates at around 10, 000, 15,000, 10,000, and 5, 000 iterations for In-
dian Pines, Jasper Ridge, Pavia University, and Cuprite datasets, respectively. This
hints at the upper bound on encoding, or compression, time for our method. Note
also that at around 2, 000 iteration mark HP_ours method starts to obtain better PSNR
values than the other three methods. As stated earlier, our method involves model
titting, which is inherently stochastic. Therefore, throughout the iterative process, we
store the model parameters that obtained the highest value for PSNR thus far. In these
plots, MAX HP_ours denote these PSNR scores. This guarantees that the model does

not get worse over time.
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Figure 4.4: Encoding procedure. Model training on (counter-clockwise from top-left)
Indian Pines, Jasper Ridge, Pavia University, and Cuprite datasets. At around the
2000-iteration mark, our method is already achieving better PSNR values than those
for JPEG, JPEG2000, and PCA-DCT. Furthermore, the PSNR value for our methods
continues to improve with more iterations (up to a point).
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Method Dataset Size PSNR | bpppb | 1y, wy, Dataset Size PSNR | bpppb | ny, wy
- 9251 KB [<S] 16 -~ 4800 KB oo 16 -
JPEG 115.6 KB | 34.085 0.2 -- 30 KB 21.130 0.1 --
JPEG2000 Indian Pines 115.6 KB | 38.098 0.2 -- Jasper Ridge 30 KB 17.494 0.1 --
PCA-DCT 115.6 KB | 33.173 0.2 - 30 KB 26.821 0.1 -
ours 115.6 KB | 40.61 0.2 15,40 30 KB 35.696 0.1 10,20
hp_ours 57.5KB | 40.35 0.1 15,40 15 KB 35.467 | 0.06 10,20
- 42724 KB [<S] 16 - 140836 KB oo 16 -~
JPEG 267 KB | 20.253 0.1 -- 880.2KB | 24.274 0.1 -
JPEG2000 Pavia University 267 KB | 17.752 0.1 -- Cuprite 880.2KB | 20.889 0.1 --
PCA-DCT 267 KB | 25.436 0.1 - 880.2KB | 27.302 0.1 --
ours 267 KB | 33.749 0.1 20,60 880.2KB | 28.954 0.1 25,100
hp_ours 133.5KB | 20.886 | 0.05 20,60 440.1KB | 24334 | 0.06 | 25,100

Table 4.2: Compression results

4.4.4 Model Fitting

The number of inputs for all our models was 2, and the number of outputs was equal
to the number of channels (or bands) of the hyperspectral image. The activation func-
tions for hidden layers were sinusoidal. We initialized the MLP using the guidelines
provided in [Sitzmann et al., 2020b]. Adam optimizer was used during training, and
the learning rate was set to 2¢ — 4. All experiments were conducted on an Intel i7

desktop with Nvidia RTX 2080 GPU.

4.4.5 Compression Results

Table 4.2 lists compression results obtained by ours, HP_ours, JPEG, JPEG2000, and
PCA-DCT methods on the four datasets. The table also shows the size of the orig-
inal, uncompressed hyperspectral images. For these results, we fix the bpppb for
each method, and we measure the performance of each method using PSNR. Notice
that the proposed method achieves higher PSNR values than those achieved by JPEG,
JPEG2000, and PCA-DCT methods. Figure 4.5 presents a visual comparison between
the original and reconstructed hyperspectral images for four benchmark datasets: In-
dian Pines, Jasper Ridge, Pavia University, and Cuprite. Each row displays the origi-

nal image on the left and its corresponding reconstructed version on the right. These
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Figure 4.5: Reconstructed images shown in pseudo-color. Each pair (left to right) dis-
plays the original (left) and reconstructed (right) hyperspectral images for the Indian
Pines, Jasper Ridge, Pavia University, and Cuprite datasets. The zoomed-in portions
confirm that structural details are well preserved in the reconstructed images, validat-
ing the performance of the proposed compression technique.

@
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images are shown in pseudo-color to highlight spectral features and make the visual
differences more discernible. The magnified portions demonstrate that the key struc-
tural elements and spatial patterns are preserved effectively in the reconstructed im-
ages, validating the performance of the proposed compression technique. The close
alignment between the original and reconstructed regions emphasizes the method’s
ability to maintain fidelity, even at high compression rates. This visualization rein-
forces that the proposed approach achieves a favorable balance between data reduc-
tion and image quality, essential for applications requiring both efficient storage and

high-quality analysis of hyperspectral data.

4.4.6 Ablative Study For Random Sampling

Hyperspectral image compression is a crucial step in handling the vast amount of data
produced by hyperspectral imaging systems. Traditional compression methods, such
as transform-based and predictive coding approaches, often face challenges in balanc-
ing high compression efficiency with minimal loss of information. With the advent of
implicit neural representations (INRs), a new paradigm has emerged, allowing hyper-
spectral images to be compressed as continuous functions parameterized by neural
networks. This approach provides several advantages, including better reconstruc-
tion quality and higher adaptability to spatial variations in the image. However, the
computational complexity of training INR models on high-resolution hyperspectral
images remains a significant bottleneck. To mitigate this, we propose a random sam-
pling strategy, where a subset of pixel locations is used during training. This method
reduces compression time while maintaining high reconstruction fidelity, as demon-
strated in our experimental results. In the following sections, we provide a detailed
analysis of how sampling influences compression performance and discuss its impli-

cations for real-world applications.
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4.4.6.1 HSI Compression Using Sampling and INR

During compression, the INR model is trained by iterating over w x h pixel locations
for each epoch. For hyperspectral images with high-spatial resolution this leads to
longer compression times. Hyperspectral images, similar to color images, exhibit spa-
tial coherence. We use this assumption and explore the effect of pixel location sam-
pling, hereafter referred to as sampling, during INR model training. The idea is to
sample a fraction of pixel locations at training time. Figure 4.6 illustrates the sam-
pling procedure. First, the image is divided into non-overlapping tiles (in the spatial
domain). This is done in order to ensure that the same fraction of pixel locations are
sampled from each region of the image. The colored dots indicate the sampled loca-
tions within each tile. The sampling is performed with rejection during each epoch to
prevent the case where the same pixel location is sampled multiple times during each
epoch. Furthermore, there is not restriction that the same pixel locations are samples
across epochs. The sampling procedure is controlled by two parameters: (1) tiles and
(2) the fraction of locations to be sampled within each tile. For the results presented
in Table 4.3, the image is divided into 9-by-9 tiles and the sampling fraction is set to
20%. This table shows compression and decompression times for four datasets. As ex-
pected sampling reduces the compression times in half for all datasets. What is more
intriguing, however, is that for comparable bpppb values, sampling results in the high-
est PSNR values. We do not yet fully understand why this is so. ours-sampling-32bit
and ours-sampling-16bit denote models that used sampling during training. As before

prefix HP denotes that model parameters are stored using half-precision.

4,5 Results

Tables 4.4 and 4.5 list compression results in terms of PSNR with a number of clas-

sical and learning-based hyperspectral image compression approaches. In order to
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grid

(@9) 1

Figure 4.6: Compression with random sampling. Pixel locations are uniformly sam-
pled during model training. This is a departure from the traditional approach of using
all pixel locations when fitting INRs.

Dataset Method bppppb | compression time (Sec) | decompression time (Sec) | PSNR 1
JPEG™ [Good et al., 1994, Qiao et al., 2014] 0.1 7.353 3.27 27.47
Indian Pines JPEG2000" [Du and Fowler, 2007] 0.1 0.1455 0.3115 33.58
PCA-DCT* [Nian et al., 2016] 0.1 1.66 0.04 32.28
ours-32bit 0.1 243.64 0.0001 36.98
ours-16bit 0.05 243.64 0.0001 36.95
ours-sampling-32bit 0.1 282.08 0.0005 40.1
ours-sampling-16bit 0.05 282.08 0.0005 28.40
JPEG' [Good et al., 1994, Qiao et al., 2014] 0.1 3.71 1.62 21.13
Jasper Ridge JPEG2000" [Du and Fowler, 2007] 0.1 0.138 0.395 17.49
PCA-DCT™ [Nian et al., 2016] 0.1 1.029 0.027 26.82
ours-32bit 0.1 312.38 0.0005 32.54
ours-16bit 0.06 312.38 0.0005 32.51
ours-sampling-32bit 0.1 7591 0.0005 34.77
ours-sampling-16bit 0.06 7591 0.0005 22.07
JPEG" [Good et al., 1994, Qiao et al., 2014] 0.1 33.86 14.61 20.25
Pavia University JPEG2000" [Du and Fowler, 2007] 0.1 0.408 0.628 17.75
PCA-DCT* [Nian et al., 2016] 0.1 6.525 0.235 25.43
ours-32bit 0.1 780.16 0.0009 34.46
ours-16bit 0.05 780.16 0.0009 34.17
ours-sampling-32bit 0.1 72.512 0.0004 38.08
ours-sampling-16bit 0.05 72.512 0.0004 27.02
JPEG™ [Good et al., 1994, Qiao et al., 2014] 0.06 101.195 45.02 12.88
Cuprite JPEG2000" [Du and Fowler, 2007] 0.06 1.193 2476 15.16
PCA-DCT* [Nian et al., 2016] 0.06 11.67 0.754 26.75
ours-32bit 0.06 1565.97 0.001 28.02
ours-16bit 0.03 1565.97 0.001 27.90
ours-sampling-32bit 0.06 664.87 0.001 37.27
ours-sampling-16bit 0.03 664.87 0.001 24.85

Table 4.3: The effect of sampling on compression times. ours-32bit is a learning-based
method that requires us to train an MLP on the input image. Consequently, com-
pression times for our method are significantly larger than those of the schemes listed
here. We attempt to address this somewhat through sampling. A sampling rate of 20%
cuts the compression time by half. The good news is our method, with our without
sampling, achieves good decompression times. Indeed the proposed method achieves
faster decompression times than JPEG, JPEG2000, and PCA-DCT methods shown in
this table. This suggests that the proposed method is well-suited to “compress-once”
sort of applications. Text decoration ™ indicates a classical method.
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compare the performance of different methods, the target bpppb is fixed across meth-
ods. For the Indian Pines dataset, the target bpppb is set to 0.2, and for the other three
datasets, it is set to 0.1. Our methods that store network parameters in half-precision
further reduce the target bpppb by one-half. These methods use the HP prefix. Suf-
fix sampling denotes that the model was training using sampling as discussed above.
For all datasets, the uncompressed bpppb is 16. As can be seen, Cuprite is the most
popular dataset—the results are available for this dataset for every method except
PCA-JPEG2000 and FPCA-JPEG2000. The last column describes the network structure
used for INR learning. n;, and wy, refer to the number of hidden layers and the width
of these layers, respectively. These results confirm that the proposed method achieves
better PSNR at a comparable bpppb than all other methods. except for the Jasper Ridge
and Cuprite dataset, in which the PCA-JPEG2000 method got better PSNR than our

sampling method at 0.1 ppb value.

4.5.1 Compression Rates

Figure 4.7 shows PSNR values at various compression rates for different methods.
Specifically, we compare our approach, labeled as ours-32bit, ours-16bit, ours-sampling-
32bit, and ours-sampling-16bit, with JPEG, JPEG2000, PCA-DCT, MPEG, X264, X265,
PCA-X264, PCA-X265 PCA-JPEG2000, and autoencoder[La Grassa et al., 2022] meth-
ods. Here, ours-32bit and ours-sampling-32bit methods store MLP weights as 32-bit
floating point values, whereas ours-16bit and ours-sampling-16bit store MLP weights
at half-precision as 16-bit floating point values that are constructed by quantizing the
MLP weights. These plots illustrate that our methods achieve higher compression
quality, i.e., better PSNR, for a given value of bpppb. This is especially true for lower
bpppb values.

For the Indian Pines dataset, ours-32bit method achieves better PSNR up to around
0.7 bpppb, at which point X264 obtains better PSNR. What is curious is that the PSNR
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Method Dataset | Size (KB) | PSNR | bpppb | ny, wy,
- 9251 0 16 -
JPEGT [Good et al., 1994, Qiao et al., 2014] 115.6 34.085 0.2 -
JPEG2000* [Du and Fowler, 2007] 115.6 35.84 0.2 -
PCA-DCT™ [Nian et al., 2016] . 115.6 33.173 0.2 -
3D-SPECK™* [Ngadiran et al., 2010] & 115.6 - 0.2 -
PCA-JPEG2000" [Kwan and Larkin, 2019, Kwan et al., 2019b, Kwan et al., 2019a] E 115.6 39.5 0.2 -
FPCA-JPEG2000" [Mei et al., 2018] 8 115.6 405 0.2
3D-DCT' [Yadav and Nagmode, 2018] E 115.6 - 0.2 -
3D-DWT-SVRT [Zikiou et al., 2020] 115.6 - 0.2 -
WSRC' [Ouahioune et al., 2021] 115.6 - 0.2 -
ours-32bit 115.6 39.10 0.2 5,60
ours-16bit 57.5 38.99 0.1 5,60
ours-sampling-32bit 115.6 42.22 0.2 5,60
ours-sampling-16bit 57.5 29.68 0.1 5,60
ours-sampling-8bit 28.7 3297 | 0.05 5,60
- 4800 ) 16 -
JPEGY [Good et al., 1994, Qiao et al., 2014] 30 21.130 0.1 -
JPEG2000* [Du and Fowler, 2007] 30 17.494 0.1 -
PCA-DCT™ [Nian et al., 2016] N 30 26.821 0.1 -
3D-SPECK* [Ngadiran et al., 2010] > 30 - 0.1 -
PCA-JPEG2000" [Kwan and Larkin, 2019, Kwan et al., 2019b, Kwan et al., 2019a] &, 30 44.26 0.1 -~
FPCA-JPEG2000" [Mei et al., 2018] g 30 - 0.1 -
3D-DCT' [Yadav and Nagmode, 2018] 8 30 - 0.1 --
3D-DWT-SVR' [Zikiou et al., 2020] 30 - 0.1
WSRC' [Ouahioune et al., 2021] 30 - 0.1
ours-32bit 30 32.54 0.1 5,20
ours-16bit 15 32,51 0.06 5,20
ours-sampling-32bit 30 34.77 0.1 5,20
ours-sampling-16bit 15 22.07 | 0.06 5,20
ours-sampling-8bit 75 24.32 0.03 5,20

Table 4.4: Compression results on the two datasets. Compression rates (i.e., the de-
sired size of the compressed file) is fixed across methods. The quality of compression
is expressed in terms of PSNR. In case of the proposed method, we include five vari-
ants: the method without sampling, both 32-bit (ours-32bit) and 16-bit (ours-16bit)
versions, and the method with a sampling rate of 20%, 32-bit (ours-sampling-32bit),
16-bit (ours-sampling-16bit), and 8-bit (ours-sampling-8bit) versions. In case of our
methods, the last column includes the number of layers and the width of these layers.
The highest PSNR values for each dataset are shown in bold. Text decorations * and
T indicate classical and learning-based methods, respectively
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Method Dataset | Size (KB) | PSNR | bpppb | nj, wy
- 42724 00 16 -
JPEGY [Good et al., 1994, Qiao et al., 2014] 267 20253 | 0.1
JPEG2000* [Du and Fowler, 2007] 267 17.752 0.1 -
PCA-DCT™ [Nian et al., 2016] .;\ 267 25.436 0.1 -~
3D-SPECK™ [Ngadiran et al., 2010] % 267 - 0.1 -
PCA-JPEG2000" [Kwan and Larkin, 2019, Kwan et al., 2019b, Kwan et al., 2019a] E 267 33 0.1 --
FPCA-JPEG20007 [Mei et al., 2018] = 267 - 0.1
3D-DCT' [Yadav and Nagmode, 2018] '5 267 - 0.1 -
3D-DWT-SVR' [Zikiou et al., 2020] A 267 - 0.1 -
WSRCT [Ouahioune et al., 2021] 267 - 0.1
ours-32bt 267 34.46 0.1 10,80
ours-16bit 133.5 34.17 0.05 10,80
ours-sampling-32bit 267 38.08 0.1 10,80
ours-sampling-16bit 133.5 27.02 0.05 10,80
ours-sampling-8bit 66.75 24.02 0.02 10,80
- 140836 S 16 -
JPEG™ [Good et al., 1994, Qiao et al., 2014] 880.2 24.274 0.1 --
JPEG2000" [Du and Fowler, 2007] 880.2 20.889 0.1 -
PCA-DCT™ [Nian et al., 2016] 880.2 27.302 0.1 --
3D-SPECK™ [Ngadiran et al., 2010] © 880.2 27.1 0.1 --
PCA-JPEG2000" [Kwan and Larkin, 2019, Kwan et al., 2019b, Kwan et al., 2019a] E 880.2 40.90 0.1 -
FPCA-JPEG2000 [Mei et al., 2018] 5 880.2 - 0.1 -
3D-DCT' [Yadav and Nagmode, 2018] 880.2 334 0.1 -
3D-DWT-SVR' [Zikiou et al., 2020] 880.2 | 2820 | 0.1
WSRC' [Ouahioune et al., 2021] 880.2 35 0.1 -~
ours-32bt 880.2 28.954 0.1 25,100
ours-16bit 440.1 24334 | 0.06 | 25,100
ours-sampling-32bit 880.2 36.55 0.1 25,90
ours-sampling-16bit 440.1 2491 0.06 | 25,90
ours-sampling-8bit 220.05 2235 | 0.03 | 25,90

Table 4.5: Compression results on the two datasets. Compression rates (i.e., the de-
sired size of the compressed file) is fixed across methods. The quality of compression
is expressed in terms of PSNR. In case of the proposed method, we include five vari-
ants: the method without sampling, both 32-bit (ours-32bit) and 16-bit (ours-16bit)
versions, and the method with a sampling rate of 20%, 32-bit (ours-sampling-32bit),
16-bit (ours-sampling-16bit), and 8-bit (ours-sampling-8bit) versions. In case of our
methods, the last column includes the number of layers and the width of these layers.
The highest PSNR values for each dataset are shown in bold. Text decorations * and
" indicate classical and learning-based methods, respectively
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for ours-16bit drops drastically at around 0.4 bppb. This merits further investigation.
One possible explanation is the effect of weight quantization. In our implementa-
tion, we quantize the network weights from 32-bit to 16-bit floating-point precision
to reduce storage. However, this quantization may result in a loss of critical informa-
tion, particularly for weights that fall outside the representable range of 16-bit floating
point. In PyTorch’s 16-bit format (FP16), precision is sacrificed to gain a broader dy-
namic range, and values outside the representable range may be clipped or rounded,
potentially degrading the network’s ability to accurately reconstruct high-fidelity rep-
resentations at lower bit rates. ours-sampling-32bit method got better PSNR than all
other methods at various bpppb levels. For Jasper Ridge, ours-sampling-32bit and ours-
16bit perform better than ours-32bit. The ours-16bit and ours-sampling-32bit methods
achieve higher PSNR values than other methods except PCA-JPEG2000.

For the Pavia University dataset, our and ours-16bit methods got PSNR at lower
bit rates than other methods. ours-sampling-32bit method got better PSNR than all
other methods, around 0.1 bpppb and more. For the Cuprite datasets, our method
got PSNR than other methods, except PCA-JPG2000, X264, and X265, specifically at
lower bit rates. ours-sampling-32bit method also got better PSNR than other methods
at various bpppb levels, except PCA-X264 and PCA-JPEG2000, specifically at lower

bit rates.

4.5.2 The Effect of Sampling

As mentioned before, we use the proposed sampling method with INR to improve the
PSNR for the datasets. Table 4.6 compares our results using sampling (ours-sampling-
32bit method) with video coding-based hyperspectral image compression methods
like X264, X265, PCA-X264, PCA-X265, MPEG, HEVC, and RPM. We fix the bpppb
for each method and dataset, and we measure the performance of each method using

PSNR. Our ours-sampling-32bit method got better PSNR than all other video coding-
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Figure 4.7: Compression results. PSNR values achieved at various bpppb for our
method, along with those obtained by other methods. Here “ours-32bit” and “ours-
sampling-32bit” refer to our method where parameters are stored at 32-bit preci-
sion, and “ours-16bit” and “ours-sampling-16bit” refer to results when parameters
are stored at 16-bit precision.
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Dataset Method bpppb | PSNR 1
X264% [Kwan and Larkin, 2019] 0.1 34.61
X265% [Kwan and Larkin, 2019] 0.1 38.5
PCA-X264% [Kwan and Larkin, 2019] 0.1 39.8
) . PCA-X265% [Kwan and Larkin, 2019] 0.1 38.1
Indian Pines
MPEGH? [Le Gall, 1991] 0.1 28.9
HEVC? [Sullivan et al., 2012] 0.1 30
RPM? [Paul et al., 2016] 0.1 31
ours-sampling-32bit 0.1 40.1
X264% [Kwan and Larkin, 2019] 0.15 37.35
X265% [Kwan and Larkin, 2019] 0.15 36.12
PCA-X264% [Kwan and Larkin, 2019] 0.15 35.35
) PCA-X265% [Kwan and Larkin, 2019] 0.15 39.94
Jasper Ridge
MPEGH? [Le Gall, 1991] 0.15 28.75
HEVC? [Sullivan et al., 2012] 0.15 -
RPM? [Paul et al., 2016] 0.15 -
ours-sampling-32bit 0.15 41.15
X264% [Kwan and Larkin, 2019] 0.1 37.17
X265+ [Kwan and Larkin, 2019] 0.1 37.90
PCA-X264% [Kwan and Larkin, 2019] 0.1 28.13
. . . PCA-X265% [Kwan and Larkin, 2019] 0.1 17.82
Pavia University
MPEGH? [Le Gall, 1991] 0.1 26.01
HEVC? [Sullivan et al., 2012] 0.1 -
RPM? [Paul et al., 2016] 0.1 -
ours-sampling-32bit 0.1 38.08
X264% [Kwan and Larkin, 2019] 0.03 28.6
X265% [Kwan and Larkin, 2019] 0.03 31.8
PCA-X264% [Kwan and Larkin, 2019] 0.03 35.5
. PCA-X265% [Kwan and Larkin, 2019] 0.03 21.7
Cuprite
MPEGH [Le Gall, 1991] 0.03 25.5
HEVCH# [Sullivan et al., 2012] 0.03 25
RPM? [Paul et al., 2016] 0.03 29
ours-sampling-32bit 0.03 34.9

Table 4.6: Comparing the proposed method (with sampling rate of 20%) against video-
based schemes. The proposed method achieves higher PSNR for all datasets except
Cuprite. For each dataset, the compression rate is fixed across methods: 0.1 for the
Indian Pines, 0.15 for the Jasper Ridge datasets, 0.1 for the Pavia University dataset,
and 0.03 for the Cuprite dataset. Text decoration ¥ indicates a video-based method.

based compression methods for all four datasets, except Cuprite.
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Dataset bpppb Method SSIM 1
01 WSRC [Ouahioune et al., 2021] 0.75
' ours-sampling-32bit 0.9798

3D-SPECK [Ngadiran et al., 2010] 0.142
3D-SPIHT [Fowler and Rucker, 2007] 0.136

3D-WBTC [Bajpai et al., 2019a] 0.141

3D-LSK [Ngadiran et al., 2010] 0.138

Cuprite 3D-NLS [Sudha and Sudhakar, 2013] 0.135
0.01 3D-LMBTC [Bajpai et al., 2019b] 0.140

3D-ZM-SPECK [Bajpai et al., 2022] 0.141

ours-32bit 0.9565

ours-16bit 0.9514
ours-sampling-32bit 0.9527

ours-sampling-16bit 0.9390

3D-SPHIT [Fowler and Rucker, 2007] 0.4
3D-DCT [Yadav and Nagmode, 2018] | 0.85

Pavia University | 0.1 ours—ﬁZz’i gzggi
ours-16bi .

ours-sampling-32bit 0.9901

ours-sampling-16bit 0.8518

Table 4.7: SSIM comparison for the Cuprite and Pavia University datasets.

4.5.3 SSIM comparison

Table 4.7 uses SSIM metric to compare our method on Cuprite datasest against other
schemes for fixed bpppb. FOR WSRC [Ouahioune et al., 2021] method, the bpppb is
fixed to 0.1, whereas for 3D-SPECK, 3D-SPHIT [Fowler and Rucker, 2007], 3D-WBTC
[Bajpai et al., 2019a], 3D-LSK [Ngadiran et al., 2010], 3D-NLS [Sudha and Sudhakar,
2013], 3D-LMBTC [Bajpai et al., 2019b], and 3D-ZM-SPECK [Bajpai et al., 2022] the
bpppb is fixed to 0.01. Furthermore, we compare our method against 3D-SPHIT and
3D-DCT methods on Pavia University dataset for 0.1 bpppb. In all cases, the proposed
method achieves better SSIM scores (for the selected bpppb). The SSIM scores for other
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methods for both Cuprite and Pavia University datasets are lifted from their respective

articles.

4.54 Summary

We draw the following conclusions from these results presented thus far: 1) the pro-
posed method, both ours-32bit and ours-16bit, perform high-quality compression at
high compression rates; 2) it is beneficial to perform architecture search plus exam-
ine the effects of quantization at compression time since on some datasets ours-16bit
outperforms ours-32bit; 3) the compression quality obtained by the proposed method
compares favorably with the three commonly used compression methods for hyper-
spectral images; and 4) sampling improves compression times while maintaining ac-

ceptable reconstruction quality as measured by PSNR.

4.6 Conclusion

In this work, we employ implicit neural representations to compress hyperspectral
images. Multi-layer perceptron neural networks with sinusoidal activation layers are
overfitted to a hyperspectral image. The network is trained to map pixel locations to
pixels’ spectral signatures. The parameters of the network, along with its structure,
represent a compressed encoding of the original hyperspectral image. We also use
a sampling method with two factors: window size and sampling rate to reduce the
compression time. We have tested our approach on four datasets, and the proposed
method achieves better PSNR than those achieved by JPEG, JPEG2000, PCA-DCT,
MPEG, X264, X265, PCA-X264, PCA-X265, and PCA-JPEG2000 methods, especially
at lower bitrates. Besides, we compare our results with the learning-based methods
like PCA-JPEG2000, FPCA-JPEG2000, 3D-DCT, 3D-DWT-SVR, and WSRC and show

that we got better PSNR and SSIM than those methods. We also show that our meth-
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ods with sampling achieve better speed and performance than our methods without
sampling.
We plan to experiment with meta-networks to achieve smaller sizes for the com-

pressed encodings and lower the compression times.



Chapter 5

HSI Compression using INR and

Meta-Learned Based Network

Hyperspectral image compression is a challenging task due to the high-dimensional
nature of hyperspectral data. The previous work in this thesis on hyperspectral image
compression using implicit neural representations (INR) and sampling demonstrated
that neural networks could effectively learn representations of spectral data. How-
ever, a limitation of this approach is the long network training time required for each
image. This inefficiency arises because the method does not exploit the spatial and
spectral structural similarities shared across images, necessitating independent train-
ing for each hyperspectral image. Consequently, compression times remain high. To
address this issue, we propose a meta-learned base network that leverages shared
representations across multiple hyperspectral images, enabling faster encoding while
maintaining high compression quality. Our method introduces modulated neural net-
works that adapt image-specific details efficiently, reducing training time and improv-

ing compression performance.

134
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5.1 A Meta-Learned Approach to Hyperspectral Image

Compression

Consider a hyperspectral image I € R"V*H*C where W and H denote the width
and the height of this image and C denotes the number of channels. I(x,y) € R
represents the spectrum recorded at location (x,y) where x € [1, W] and y € [1, H].
In Chapter 4, we demonstrate that it is possible to learn implicit neural represenations
that map pixel locations to pixel spectra. Specifically, we can learn a function ®g :
(x,y) — I(x,y). Here, © represent function parameters. The implicit neural network

is trained by minimizing the loss

LI, ®e) = ) [1(x,y) — Po(x,y)].
Yy

Others [Tancik et al., 2020, Sitzmann et al.,, 2020b] have shown that SIREN
networks—multi-layer perceptrons with Sine activation functions—are particularly
well-suited to encode high-frequency data that sits on a grid. SIREN networks are
widely used to learn implicit neural representations. For our purposes, a SIREN net-
work (®g) comprises of K hidden layers. Each layer uses a sinosoidal activation func-
tion. The K hidden features at each layer are hy, hy, h3, - - - , hg. Specifically, we define
the SIREN network as:

h; = sin (W;h;_1 +b;),

where hy € R? denotes the 2D pixel locations, Wy € R9*2 b; € RY, and fori € [2,K],
W, € R4 and ;,b; € R?. For notational convenience, we refer to d as the width of

the hidden layer. The output of the network is

hg 1 = Wiyihg + by,
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with Wgy 1 € R*4 and hg.1,bxi1 € RE. hyg.q is the output of the model, in our
case pixel spectrum. W; and b; denote the weights and biases for layer i € [1,K + 1]
and represent the learnable parameters of the network. Once this network is trained
on a given hyperspectral image, it is sufficient to store the parameters @ = {W;, b;|i €
[1,K + 1]}, since it is possible to recover the original image by evaluating ®g at pixel
locations (x,y). Savings are achieved when it takes fewer bits to encode ®g than those
required to encode the original image.

While we have successfully employed SIREN networks to compress hyperspectral
images, the current scheme suffers from two drawbacks: 1) slow compression times
and 2) its inability to exploit spatial and spectral structure that is shared between hy-
perspectral images, not unlike how spatial structure is used when analyzing RGB im-
ages. Both (1) and (2) are due to the a fact that a new SIREN network needs to be
trained for scratch for each hyperspectral image. Training is time consuming process
that often requires multiple epochs, and no information is shared between multiple

images.

5.2 Modulated SIREN Network

In this work we address the two shortcomings by using a meta learning approach
that employs a SIREN network (henceforth referred to as the base network) that
is shared between multiple hyperspectral images. Image specific details are stored
within modulations—scales and shifts—applied to the features h;, i € [0, N] of the
base network. This is inspired by the work of Perez et al., which introduced FiLM
layers [Perez et al., 2018]

FiLM(h;) = v; © h; + B;

that apply scale y; and shift B; to a hidden feature h;. Here © denotes element-wise

product. Applying shift and scale at each layer in effect allow us to parameterize



CHAPTER 5. HSI COMPRESSION USING INR AND META-LEARNED BASED NETWORK137

family of neural networks using a common (fixed) base network. Chan et al. propose a
scheme where a SIREN network is used to parameterize the generator in a generative-
adversarial setting [Chan et al., 2021]. There new samples are generated by applying

modulations (scale y and shift ) as follows:

h; = sin (77; (Wih;—1 +b;) + B;) .

Similarly, Mehta et al. show that it is possible to parameterize a family of implicit neu-
ral representation by applying modulations to the hidden features as (scale «;) [Mehta
etal., 2021]

h; = a; ©sin (W;h;_1 +b;).

Both of these approach show that it is possible to map a low-dimensional latent vector
to the modulations that are applied to the hidden features. E.g., [Chan et al., 2021] uses
an MLP to map a latent vector to scale 7y; and shift ;. Mehta et al., on the other hand,
construct the modulation «; recursively using a fixed latent vector. These schemes,
however, require that the parameters of the base network, plus the parameters of the
networks needed to compute the modulations are stored. As a consequence these

schemes are not well-suited to the problem of data compression.

Work by Dupont et al. using modulations to improve SIREN networks [Dupont
et al., 2022]. They concluded that it is sufficient to just use shifts B;s, and that using
scale modulations do not result in a significant improvement in performance. Fur-
thermore, their work also suggests that applying scale modulations alone does not
result in an improvement. We follow their advice and apply shift modulations to the

features of the SIREN networks:

hi = sin ((Wihi—l + bl) + ,31) ’ (5-1)
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here B; € R%. Tt is easy to imagine that storing modulations By, - - - , B takes less space
than storing weights W; and biases b; of the base network (under the assumption that
the cost of storing the base network parameters is amortized over multiple images).
It is possible to achieve further savings by mapping a low-dimensional latent vector
¢ € R¥%uatent to modulations. Dupont et al. also showed that it is sufficient to use a linear
mapping to construct modulations B; given a latent vector and that using a multi-
layer perceptron network offers little benefit. Therefore, we use a linear mapping to

construct modulations given a latent vector as:
B=Wuno+by, (5.2)

with Wy € RO K ¥t and by € R@K), the weights and biases of the linear layer
used to project latent vector to modulations B = [Bo| - - - |Bk]. We refer to the lin-
ear layer that maps the latent vector to the modulation as the meta network. Under
this setup, it is possible to reconstruct the original hyperspectral image I by evaluat-
ing the modulated base network ®g (x,y; Bo, - - - , Bx) at image pixel locations (x, y).
Similarly, when using the latent code, we can achieve the same result by evaluating

Do (x,1; ¢, On), where Oy = {Wy, by}, at image pixel locations (see Figure 5.1).

5.3 Meta learning

Model Agnostic Meta-Learning (MAML) learns an initialization of model parameters
O, such that the model can be quickly adapted to a new (related) task [Finn et al.,
2017]. It has been shown that MAML approaches can benefit implicit neural repre-
sentations by reducing the number of epochs needed to fit the representation to a new
data point [Sitzmann et al., 2020a]. We begin by discussing MAML within our context.
Say we are given a set of hyperspectral images I(1), - - ., I(T), Furthermore, assume we

want to initialize the parameters © of the model ®g over this set of images. MAML
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comprises of two loops: (1) in the inner loop, MAML computes an image-specific up-
date

O = 0 tyr Vol (1<t>, cp@) ;

and (2) in the outer loo,p it updates ® with respect to the performance of the model

(after the inner loop update) on the entire set:

@ = @ - “outerv® 2 £ (I(t)/ @@(t)) .
te[1,T]
In practice, image t is randomly chosen in the inner loop step, and it is often sufficient
to sample a subset of images in the outer loop step. The result is model initialization
parameters © that will allow the model to be quickly adapted to a previously unseen

hyperspectral image, reducing encoding in time.

The approach discussed above is not directly applicable in our setting since we
seek to learn image specific modulations that are applied to a base network that is
shared between multiple hyperspectral images. We follow the strategy discussed in
[Zintgraf et al., 2019] where they partition the parameters into two sets. The first set,
termed context parameters, are “task” specific, and these are adapted in the inner
loop, whereas the second set is shared across “tasks” and is meta-learned in the outer

loop.

We apply this approach to our problem as follows. Given a set of hyperspec-
tral images, parameters ® of the base networks and image specific modulations
pl = {,B(()t), v, ﬁg)}, we first update image-specific modulations in the inner loop
as

:B(t) = ,B - ‘Xinnervﬁﬁ <I(t)'©[®‘m> /
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and then update the parameters © in the outer loop

© =0 —touer Y. Vol (1, @0 ) -
te[1,T]

Starting value for B is fixed and [Zintgraf et al., 2019] suggests to set the initial values
for p = 0. ®|gp denotes the modulated SIREN network (see Equation 5.1).

To achieve further savings, we employ linear mapping defined in Equation 5.2 to
construct modulations from a given latent vector ¢. As before, we can initialize ¢ = 0.
Here, the goal is to learn image-specific latent vectors ¢(*). The procedure is similar,

tirst image specific latent vectors are updated in the inner loop as

9 = ¢~ tioner VoL (1Y, @(g1y)
Next, parameters ©" are updated in the outer loop

®+ — ®+ - “Outer 2 V@+£ <I(t), ¢[®+|,B(t>]> .
te[1,T]
Here ®T = {©, Wy, by} denotes parameters of the base network plus the parameters
of the linear mapping used to construct modulations from latent vectors. Parameters
O are shared between images and latent vectors ¢ encode information specific to

corresponding image.

5.4 Algorithm for Meta-Learned Hyperspectral Image
Compression

This section provides the detailed algorithm used for the proposed meta-learned hy-
perspectral image compression method. The approach involves compressing hy-

perspectral images using a base network modulated with latent parameters. Meta-
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learning further optimizes the initialization of the network parameters to minimize
the number of gradient steps required during training and testing.

The primary challenge is efficiently fitting hyperspectral images with a shared base
network while maintaining individual image information through modulations. The
pseudocode below outlines the procedure, covering both the inner and outer loops of

optimization, as well as compression and decompression processes.

5.4.1 Pseudocode of the Proposed Method

Algorithm 2 Meta-Learned Hyperspectral Image Compression using Modulated
SIREN Network
1: Input: Dataset of hyperspectral images 7 = {I(l), 1@, .. 1(7) }, with normalized
pixel coordinates (x,y) € [—1,1] x [—1,1] and spectra I(x,y)
2: Output: Compressed latent vectors ¢(!) for each hyperspectral image I(*) and
shared base network parameters ©"
Initialization:
Initialize base network parameters @ = {W;,b; | i € [1, K+ 1]}
Initialize meta-network parameters @y = {Wy, by}
Initialize latent vectors ¢(*) for each hyperspectral image I()
Set learning rates &inner and Aouter
for epoch in range(max_epochs) do
for each hyperspectral image I!) € 7 do
10: Inner Loop: Update latent vector ¢(*)

11: ¢(t) < ¢(t) - ‘Xinnervqy(f)[’ (I(t)/ q)[@ﬂq,(f)})
122 Outer Loop: Update shared parameters @7 = {©, Oy}

14: Compression:

15: Store optimized base network parameters @ (shared)

16: Store latent vectors ¢p(*) for each hyperspectral image I(*)

17: Decompression (Inference Phase):

18: for each pixel coordinate (x,y) € [—1,1] x [-1,1] do

19: Compute pixel spectrum using modulated base network:
200 I(x,y) P+ o) (x,y)

21: Reconstruct image: Reconstructed_Image!) «— {I(x,y) | (x,y) € [-1,1] X

[-1,1]}
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The workflow of the proposed method is outlined in Algorithm 2.
* Initialization:

— Initialize the base network parameters @ = {W;,b; | i € [1, K+ 1]}.
— Initialize the meta-network parameters @)1 = {Wy, b}
— Initialize the latent vectors ¢(*) for each hyperspectral image I(*).

— Set the learning rates ajpnner and aouter for the inner and outer loop updates,

respectively.
* Meta-Learning:

— Inner Loop:

+ Update the latent vectors ¢(*) for each hyperspectral image I*) using
gradient descent.
+ Minimize the reconstruction loss E(I(t),CID[@+| ¢<t>]) to ensure that the

modulations f; generated from ¢(*) capture image-specific information.
— Outer Loop:

+ Update the shared parameters @7 = {©, ®y} using all hyperspectral
images in the dataset.
+ Minimize the overall loss across all images to ensure that the base net-

work generalizes and captures common features.
¢ Compression:

— After training is complete, store the shared parameters @ of the base net-

work.

— Store the latent vectors ¢() for each hyperspectral image I*) as the com-

pressed representation.

* Decompression:
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— During inference, use the stored parameters @+ and the latent vector ¢(*)

to reconstruct each hyperspectral image.

— For each pixel coordinate (x, y) in the image grid:

+ Evaluate the modulated base network ® g, to compute the pixel

spectrum I(x,vy).

— Assemble the reconstructed pixel spectra to form the complete image I(*).

5.4.2 Discussion

The proposed meta-learned hyperspectral image compression method offers several
notable advantages and addresses key challenges in hyperspectral data processing.
As outlined in Algorithm 2, this approach is designed to overcome the limitations of
traditional compression methods by leveraging the strengths of both neural represen-
tations and meta-learning. Below, we discuss its core strengths, trade-offs, and future

potential.

* Advantages of Meta-Learned Compression

— Efficient Generalization Across Datasets: A key advantage of the proposed
method is that it uses a shared base network to generalize across multiple
datasets. This significantly reduces redundancy, as the shared parameters
©T capture common features present in hyperspectral data (e.g., natural
scenes). By storing only the latent vectors ¢() for individual datasets, the
storage requirements are reduced compared to storing separate models for

each dataset.

— Fast Decompression and Compact Storage: The method excels in applica-
tions where fast decompression is essential, such as real-time analysis of

large hyperspectral datasets. Once the modulations and shared parameters
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are stored, the decompression phase requires only a few forward passes
through the base network. This makes the algorithm ideal for scenarios
where compression is performed once, but decompression needs to be done

frequently, like remote sensing or onboard satellite data analysis.

- Reduced Memory Footprint: Traditional methods, such as JPEG2000 and
PCA-DCT, require storing large matrices or transformations. By contrast,
our method only stores modulations, which are low-dimensional parame-

ters, making it more memory-efficient.

— Training Acceleration through Meta-Learning: The use of meta-learning
ensures that fewer gradient descent steps are needed during training and
testing. This saves computational time, especially when dealing with large-
scale data, as the initialized parameters @" are already close to optimal.
Thus, the method is particularly well-suited for iterative tasks requiring fast
adaptation, such as incremental learning or dynamic environmental moni-

toring.
e Trade-offs and Limitations

— Compression Time: One of the trade-offs in the proposed approach is the
relatively longer compression time during the training phase. As high-
lighted in the experimental results (see Table 5.3), the compression process
can take longer than traditional methods due to the multiple gradient steps
involved. This may limit its applicability for real-time compression sce-
narios where quick encoding is required. However, this limitation can be
mitigated through sampling techniques or by leveraging hardware acceler-

ations (e.g., GPUs).

— Dependency on Training Data: The quality of compression is heavily influ-

enced by the training data used to fit the base network. If the datasets used
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for training are not diverse enough, the base network may not generalize
well to new types of hyperspectral data, leading to lower reconstruction

quality during decompression.

— Lossy Nature and PSNR Variation: Although the method achieves com-
petitive Peak Signal-to-Noise Ratio (PSNR) scores compared to other tech-
niques, the reconstructed images may still exhibit some minor artifacts at
extremely low bit rates. In particular, performance can vary across datasets
with different spectral and spatial properties, such as Cuprite versus Indian
Pines. The performance variability suggests that fine-tuning is necessary

when applying the method across highly heterogeneous datasets.
¢ Scalability and Future Directions

- Handling Large Datasets: The modular design of the proposed method
makes it scalable to larger datasets. For example, the shared base net-
work can be pretrained on large datasets, and modulations can be quickly
fine-tuned for new hyperspectral images. This scalability is crucial for real-
world applications, such as climate monitoring, where hyperspectral im-

ages are collected over time and need to be efficiently compressed.

— Incorporating Additional Layers of Modulation: Future work can explore
more sophisticated modulation schemes incorporating shifts and scales
(rather than just shifts) to enhance performance. Additionally, using hierar-
chical or multi-scale modulation layers could improve the network’s ability

to capture fine-grained details across different spectral bands.

— Transfer Learning and Domain Adaptation: Transfer learning techniques
could further enhance the method by enabling the shared base network to
adapt quickly to unseen datasets. Similarly, domain adaptation strategies

can be integrated to handle datasets with different spatial resolutions or
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spectral characteristics, improving the generalizability of the approach.

- Hardware Optimization and Parallelization: As the method relies on neural
networks, further research could focus on optimizing hardware implemen-
tations. For instance, deploying the method on specialized hardware such
as TPUs or FPGAs could significantly speed up both the compression and
decompression phases, making the method suitable for real-time applica-

tions.

This discussion highlights both the advantages and limitations of the proposed
method. The method demonstrates a strong potential to become a state-of-the-art
solution for hyperspectral image compression, especially in scenarios requiring high

compression rates, fast decompression, and efficient storage.

5.5 Implementation Details and Practical Considera-

tions

5.5.1 Dealing with Images Having Different Numbers of Channels

To handle hyperspectral images with varying numbers of channels, we standardize
the output by padding the channel dimensions. The padding ensures that all images,
regardless of their original number of spectral channels, match the fixed output di-
mensionality the base network requires. This padding is performed in a way that
does not distort the spectral information of the image. Specifically, zero-padding is
employed to extend the smaller channel dimensions to align with the maximum chan-
nel size expected by the network. This approach allows the base network to process
diverse hyperspectral datasets without requiring structural modifications to the net-

work.
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5.5.2 File Format of the Compressed Image

The compressed representation of an image is stored in a .pt file, a format commonly
used in PyTorch for saving tensors and models. In this file, the latent modulations,
which are vectors representing the compressed image, are saved. These modulations
encapsulate the image-specific information required to reconstruct the image when
used with the shared base network. This efficient representation significantly reduces
storage requirements compared to conventional compression methods, as only the
modulations need to be saved for each image, while the shared base network pa-
rameters remain constant. We do not need to save the base network parameters, as
we assume that people who want to use the transferred hyperspectral image already
have access to them. When the modulations of a new hyperspectral image are sent,
the recipients only need these modulations, along with the existing base network pa-

rameters, to decompress the image.

Only the image-specific modulations need to be saved for each image, while the
shared base network parameters are assumed to be available at the decompression
stage. The total number of bits required to save the compressed representation of an

image can be formally expressed as:

Total bits required for storage = bits per parameter X number of modulation parameters.

-~

bpp g

Here, bpp denotes the precision of each parameter (for example, 32 for float32 or 16
for float16), and ny represents the total number of modulation parameters specific to
the image. This approach ensures efficient compression, as the storage requirements

scale with the size of the modulations rather than the full network parameters.
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5.5.3 Compressing a New Image Using the Base Network

Compressing a new image using the proposed method does not require retraining the
shared base network. Instead, the modulations specific to the new image are trained
while keeping the base network parameters fixed. This involves initializing a latent
vector for the new image and optimizing it through gradient descent to minimize the
reconstruction loss. Once optimization is complete, the trained modulations for the
new image are saved in a .pt file, representing the compressed image. This approach
leverages the generalization capabilities of the pre-trained base network, enabling fast

and efficient compression of new hyperspectral images.

5.6 Experiments

In line with prior studies, we utilize key performance metrics to assess the efficacy of
our proposed compression technique. These metrics, including Peak Signal-to-Noise
Ratio (PSNR), Mean Squared Error (MSE), and bits-per-pixel-per-band (bpppb), are
elaborated in Chapter 3. PSNR, a widely used measure in image compression, quan-
tifies the difference in quality between the original image and its compressed counter-
part, with higher values indicating superior quality. MSE provides a complementary
metric by measuring the overall deviation between the original and compressed im-
ages, with smaller values indicating better reconstruction. Finally, bpppb quantifies
the compression rate achieved, where smaller values reflect higher compression. De-
tails of these metrics, along with their formulations and significance, are provided in
Chapter 3.

The datasets used to evaluate the effectiveness of our methodology are detailed in
Chapter 3. We selected these datasets—Indian Pines, Jasper Ridge, Pavia University,
and Cuprite—due to their frequent use in hyperspectral image compression studies.

Each dataset presents unique challenges and characteristics that make them especially
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Figure 5.2: Compression results. PSNR values achieved at various bpppb for our
method, along with those obtained by other methods. Here “ours-32bit” and “ours-
sampling-32bit” refer to our method where parameters are stored at 32-bit preci-
sion, and “ours-16bit” and “ours-sampling-16bit” refer to results when parameters are
stored at 16-bit precision [Rezasoltani and Qureshi, 2023b], and meta-learning refers
to the proposed method in this thesis.

suitable for studying meta-learning-based hyperspectral image compression, where
the goal is to learn a base model that can quickly adapt to new scenes or acquisition
conditions with minimal fine-tuning. By spanning a wide spectrum of scene types, the
selected datasets enable a comprehensive evaluation of both the cross-domain gener-
alization and the adaptability of our meta-learned hyperspectral compression model.
This diversity ensures that the performance metrics obtained reflect not only the re-
construction quality but also the flexibility and robustness of the proposed method in
practical, real-world scenarios. Moreover, the datasets vary in spatial resolution, num-
ber of spectral bands, and noise levels, providing a challenging yet realistic environ-
ment to validate the benefits of meta-learning over traditional compression techniques

that typically lack the capacity to generalize across domains without retraining.



CHAPTER 5. HSI COMPRESSION USING INR AND META-LEARNED BASED NETWORK151

Indian Pines

Method Size (KB) | PSNR | bpppb | 1y, wy,
- 9251 ) 16 -
JPEG [Good et al., 1994, Qiao et al., 2014] 115.6 34.085 0.2 -
JPEG2000 [Du and Fowler, 2007] 115.6 35.84 0.2 -
PCA-DCT [Nian et al., 2016] 115.6 33.173 0.2 -
PCA-JPEG2000 [Du and Fowler, 2007] 115.6 395 0.2 -
FPCA-JPEG2000 [Mei et al., 2018] 115.6 40.5 0.2 -.-
3D SPECK [Tang and Pearlman, 2006] 115.6 - 0.2 --
3D-DCT [Yadav and Nagmode, 2018] 115.6 - 0.2 -
3D-DWT-SVR [Zikiou et al., 2020] 115.6 - 0.2 -
WSRC [Ouahioune et al., 2021] 115.6 - 0.2 --
ours-32bit [Rezasoltani and Qureshi, 2023a] 115.6 42.22 0.2 5,60
ours-16bit [Rezasoltani and Qureshi, 2023a] 57.5 29.68 0.1 5,60

ours-sampling-32bit [Rezasoltani and Qureshi, 2023b] 115.6 42.22 0.2 5,60
ours-sampling-16bit [Rezasoltani and Qureshi, 2023b] 57.5 29.68 0.1 5,60

meta-learning 0.003 33.36 | 6.9e-6 | 10,128
Jasper Ridge
Method Size (KB) | PSNR | bpppb | nj,, wy,
- 4800 oS 16 -
JPEG [Good et al., 1994, Qiao et al., 2014] 30 21.130 0.1 --
JPEG2000 [Du and Fowler, 2007] 30 21.130 0.1 -
PCA-DCT [Nian et al., 2016] 30 26.821 0.1 -
PCA-JPEG2000 [Du and Fowler, 2007] 30 - 0.1 -
FPCA-JPEG2000 [Mei et al., 2018] 30 - 0.1 -
3D SPECK [Tang and Pearlman, 2006] 30 - 0.1 -
3D DCT [Yadav and Nagmode, 2018] 30 - 0.1 --
3D-DWT-SVR [Zikiou et al., 2020] 30 - 0.1 -
WSRC [Ouahioune et al., 2021] 30 - 0.1 -
ours-32bit [Rezasoltani and Qureshi, 2023a] 30 32.54 0.1 5,20
ours-16bit [Rezasoltani and Qureshi, 2023a] 15 22.07 0.06 5,20
ours-sampling-32bit [Rezasoltani and Qureshi, 2023b] 30 34.77 0.1 5,20
ours-sampling-16bit [Rezasoltani and Qureshi, 2023b] 15 22.07 0.06 5,20
meta-learning 0.003 30.87 | 1.4e-5 | 10,128

Table 5.1: Compression results. Our proposed method (meta-learning) got a compa-
rable PSNR with other method for the two datasets, even with a higher compression
rate (small bpppb) and smaller image compression size
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Pavia University

Method Size (KB) | PSNR | bpppb | 1y, wy,
- 42724 ) 16 -
JPEG [Good et al., 1994, Qiao et al., 2014] 267 20.253 0.1 -
JPEG2000 [Du and Fowler, 2007] 267 17.752 0.1 -
PCA-DCT [Nian et al., 2016] 267 25.436 0.1 -
PCA-JPEG2000 [Du and Fowler, 2007] 267 33 0.1 -
FPCA-JPEG2000 [Mei et al., 2018] 267 - 0.1 -
3D-SPECK [Tang and Pearlman, 2006] 267 - 0.1 --
3D-DCT [Yadav and Nagmode, 2018] 267 - 0.1 -
3D-DWT-SVR [Zikiou et al., 2020] 267 - 0.1 -
WSRC [Ouahioune et al., 2021] 267 - 0.1 --
ours-32bit [Rezasoltani and Qureshi, 2023a] 267 34.46 0.1 10,80
ours-16bit [Rezasoltani and Qureshi, 2023a] 133.5 34.17 0.05 10,80

ours-sampling-32bit [Rezasoltani and Qureshi, 2023b] 267 38.08 0.1 10,80
ours-sampling-16bit [Rezasoltani and Qureshi, 2023b] 133.5 27.49 0.05 10,80

meta-learning 0.0032 32.79 | 14e-6 | 10,128
Cuprite
Method Size (KB) | PSNR | bpppb | nj,, wy,
- 140836 oS 16 -
JPEG [Good et al., 1994, Qiao et al., 2014] 880.2 24.274 0.1 --
JPEG2000 [Du and Fowler, 2007] 880.2 20.889 0.1 -
PCA-DCT [Nian et al., 2016] 880.2 27.302 0.1 -
PCA-JPEG2000 [Du and Fowler, 2007] 880.2 40.90 0.1 -
FPCA-JPEG2000 [Mei et al., 2018] 880.2 - 0.1 -
3D-SPECK [Tang and Pearlman, 2006] 880.2 27.1 0.1 -
3D-DCT [Yadav and Nagmode, 2018] 880.2 33.4 0.1 --
3D-DWT-SVR [Zikiou et al., 2020] 880.2 28.20 0.1 -
WSRC [Ouahioune et al., 2021] 880.2 35 0.1 -
ours-32bit [Rezasoltani and Qureshi, 2023a] 880.2 28.954 0.1 25,100
ours-16bit [Rezasoltani and Qureshi, 2023a] 440.1 24.334 | 0.06 | 25,100

ours-sampling-32bit [Rezasoltani and Qureshi, 2023b] 880.2 36.55 0.1 25,90
ours-sampling-16bit [Rezasoltani and Qureshi, 2023b] 440.1 2491 0.06 25,90
meta-learning 0.003 2457 | 4.5e-7 | 10,128

Table 5.2: Compression results. Our proposed method (meta-learning) got a compa-
rable PSNR with other method for the two datasets, even with a higher compression
rate (small bpppb) and smaller image compression size
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Dataset Method bppppb | compression time (Sec) | decompression time (Sec) | PSNR 1
JPEG™ [Good et al., 1994, Qiao et al., 2014] 0.1 7.353 3.27 27.47
. . JPEG2000" [Du and Fowler, 2007] 0.1 0.1455 0.3115 33.58
Indian Pines
PCA-DCT* [Nian et al., 2016] 0.1 1.66 0.04 32.28
ours-32bit 0.1 243.64 0.0001 36.98
ours-16bit 0.05 243.64 0.0001 36.95
ours-sampling-32bit 0.1 282.08 0.0005 40.1
ours-sampling-16bit 0.05 282.08 0.0005 28.40
meta-learning 6.9e-6 0.033 0.000717 33.36
JPEG™ [Good et al., 1994, Qiao et al., 2014] 0.1 3.71 1.62 21.13
. JPEG2000" [Du and Fowler, 2007] 0.1 0.138 0.395 17.49
Jasper Ridge -
PCA-DCT™ [Nian et al., 2016] 0.1 1.029 0.027 26.82
ours-32bit 0.1 312.38 0.0005 32.54
ours-16bit 0.06 312.38 0.0005 32.51
ours-sampling-32bit 0.1 75.91 0.0005 34.77
ours-sampling-16bit 0.06 75.91 0.0005 22.07
meta-learning 1.4e-5 0.025 0.0007 30.87
JPEG™ [Good et al., 1994, Qiao et al., 2014] 0.1 33.86 14.61 20.25
. L JPEG2000" [Du and Fowler, 2007] 0.1 0.408 0.628 17.75
Pavia University -
PCA-DCT™ [Nian et al., 2016] 0.1 6.525 0.235 25.43
ours-32bit 0.1 780.16 0.0009 34.46
ours-16bit 0.05 780.16 0.0009 34.17
ours-sampling-32bit 0.1 72.512 0.0004 38.08
ours-sampling-16bit 0.05 72.512 0.0004 27.02
meta-learning 1.4e-6 0.43 0.0006 32.79
JPEG™ [Good et al., 1994, Qiao et al., 2014] 0.06 101.195 45.02 12.88
Cuprite JPEG2000" [Du and Fowler, 2007] 0.06 1.193 2.476 15.16
PCA-DCT™ [Nian et al., 2016] 0.06 11.67 0.754 26.75
ours-32bit 0.06 1565.97 0.001 28.02
ours-16bit 0.03 1565.97 0.001 27.90
ours-sampling-32bit 0.06 664.87 0.001 37.27
ours-sampling-16bit 0.03 664.87 0.001 24.85
meta-learning 4.5e-7 111 0.0007 24.57

Table 5.3: The effect of using the meta-learning method on compression times. ours-
32bit is a learning-based method that requires us to train an MLP on the input image.
Consequently, compression times for our method are significantly larger than those of
other schemes listed here. We attempt to address this somewhat through sampling. A
sampling rate of 20% cuts the compression time by half. The good news is our method,
with or without sampling, achieves good decompression times. Indeed the proposed
method achieves faster decompression times than JPEG, JPEG2000, and PCA-DCT
methods shown in this table. This suggests that the proposed method is well-suited to
“compress-once” sort of applications. It is evident that our approach, meta-learning,
enhances the compression time. Text decoration T indicates a classical method.
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5.6.1 Comparison with other methods

Figure 5.2 shows PSNR values at various compression rates for different meth-
ods. Specifically, we compare our approaches, labeled as meta-learning, ours-32bit,
ours-16bit, ours-sampling-32bit, and ours-sampling-16bit, with JPEG, JPEG2000, PCA-
DCT, MPEG, X264, X265, PCA-X264, PCA-X265 PCA-JPEG2000, and autoencoder
[La Grassa et al.,, 2022] methods. Here, ours-32bit and ours-sampling-32bit meth-
ods store MLP weights as 32-bit floating point values, whereas ours-16bit and ours-
sampling-16bit store MLP weights at half-precision as 16-bit floating point values that
are constructed by quantizing the MLP weights. These plots illustrate that our meth-
ods achieve higher compression quality, i.e., better PSNR, for a given value of bpppb.

This is especially true for lower bpppb values.

For the Indian Pines dataset, the ours-32bit method achieves superior PSNR up to
approximately 0.7 bpppb, after which the X264 method surpasses it in performance.
Interestingly, the PSNR for the ours-16bit method drops significantly at around 0.4
bpppb, which suggests that this behavior requires further investigation. One possible
explanation is the effect of weight quantization. In our implementation, we quantize
the network weights from 32-bit to 16-bit floating-point precision to reduce storage.
However, this quantization may result in a loss of critical information, particularly
for weights that fall outside the representable range of 16-bit floating point. In Py-
Torch’s 16-bit format (FP16), precision is sacrificed to gain a broader dynamic range,
and values outside the representable range may be clipped or rounded, potentially de-
grading the network’s ability to accurately reconstruct high-fidelity representations at
lower bit rates. However, the ours-sampling-32bit method outperforms all other meth-
ods across various bpppb levels, demonstrating its strength in balancing quality and

compression.

In the case of Jasper Ridge, the ours-sampling-32bit and ours-16bit methods show
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better results than the ours-32bit method, with higher PSNR values achieved at mul-
tiple bit rates. These two methods surpass most of the competing approaches except
for PCA-JPEG2000, which slightly edges them in certain conditions.

For the Pavia University dataset, the our and ours-16bit methods exhibit superior
performance at lower bit rates compared to other methods. Additionally, the ours-
sampling-32bit method achieves the highest PSNR among all the approaches when
evaluated at around 0.1 bpppb and higher bit rates, confirming its effectiveness in
maintaining quality under varying compression constraints.

Regarding the Cuprite dataset, the our method delivers higher PSNR than most
other methods, with the exception of PCA-JPEG2000, X264, and X265, particularly at
lower bit rates. Similarly, the ours-sampling-32bit method consistently performs better
than other methods at multiple bpppb levels, although PCA-X264 and PCA-JPEG2000
remain competitive at certain low bit rates.

Across all four datasets, the meta-learning-based compression approach demon-
strates a distinct advantage by achieving higher PSNR values at extremely low bpppb
levels, where most competing methods are unable to perform effective compression.

From these results, the following conclusions can be drawn: (1) the proposed
method achieves high-quality compression even at high compression ratios, indicat-
ing its robustness and efficiency, and (2) the quality of compression achieved by our
method consistently surpasses that of the three widely used compression methods
for hyperspectral images. This highlights the potential of our approach in addressing
the challenges of hyperspectral image compression more effectively than traditional

techniques.

5.6.2 Model Fitting

We utilize PyTorch [Paszke et al., 2019] to implement all of our models. In the inner

loop, we employ Stochastic Gradient Descent (SGD) with a learning rate of 1le-2. In the
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outer loop, we utilize the Adam optimization algorithm with a learning rate of either
le-6 or 3e-6. We standardize the values of the coordinates x to be within the range of

—1 to 1 and the features y to be within the range of 0 to 1.

5.6.3 Compression Results

The compression results produced by the proposed method in this chapter (meta-
learning), our previous methods (ours-32bit) [Rezasoltani and Qureshi, 2023a],
(ours-16bit) [Rezasoltani and Qureshi, 2023a], (ours-32bit-sampling) [Rezasoltani and
Qureshi, 2023b], and (ours-16bit-sampling) [Rezasoltani and Qureshi, 2023b]), and a
number of classical and learning-based hyperspectral image compression approaches
on the four datasets are listed in Tables 5.1 and 5.2. The table further displays the

dimensions of the original, uncompressed hyperspectral images.

Our proposed method (meta-learning) got better PSNR than JPEG, JPEG2000, and
PCA-DCT for all four datasets, even with a higher compression rate (small bpppb) and
smaller image compression size. Moreover, our proposed method got nearly similar
PSNR to our previous methods (ours-32bit, ours-16bit, ours-32bit-sampling, and ours-

16bit-sampling) with a higher compression rate and smaller image compression size.

Table 5.3 displays the compression time, decompression time, and PSNR (Peak
Signal-to-Noise Ratio) results for the approach presented in this chapter (meta-
learning), our previous methods(ours-32bit, ours-16bit, ours-32bit-sampling, and
ours-16bit-sampling), as well as JPEG, JPEG2000, and PCA-DCT for the four datasets.
It is evident that our approach, meta-learning, enhances the compression time. We got
better compression and decompression time than JPEG, JPEG2000, PCA-DCT, ours-
32bit, ours-16bit, ours-32bit-sampling, and ours-16bit-sampling, while PSNR remains
better than JPEG, JPEG2000, and PCA-DCT and close to ours-32bit, ours-16bit, ours-

32bit-sampling, and ours-16bit-sampling.
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5.7 Ablative Study

In this section, we investigate the impact of training our meta-learned compression
network on different combinations of datasets and evaluate its generalization ability.

Specifically, we perform two experiments:

¢ Case 1: Train on Indian Pines, Jasper Ridge, and Pavia University, and test on

Cuprite.
¢ Case 2: Train only on Indian Pines and Jasper Ridge, and test on Cuprite.

The goal of this study is to examine how training with a broader or narrower set
of hyperspectral datasets influences the model’s performance, particularly on unseen
data. This analysis gives insights into how the diversity of training data affects the
compression times, decompression times, and PSNR on new datasets. Below are the

results for the two cases.

5.7.1 Results and Analysis

In Case 1, training on Indian Pines, Jasper Ridge, and Pavia University results in the

following:

¢ The PSNR values for the training datasets are 36.47, 38.61, and 35.58, respec-

tively.
¢ The PSNR value for the test dataset (Cuprite) is 14.09 with 10 inner steps.

* The compression time is approximately 0.0317 seconds, and the decompression

time is 0.0016 seconds.

In Case 2, where training was done only on Indian Pines and Jasper Ridge, the

results are as follows:
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* The PSNR values for the training datasets are 37.79 and 40.44, respectively.

* The PSNR value for the test dataset (Cuprite) is 13.88, with 10 inner steps.

* The compression time is 0.0295 seconds, and the decompression time is 0.0010

seconds.

These results suggest that including additional training datasets may help the
model achieve better generalization, but the improvements are nuanced. Although
Case 1, with three datasets, achieves slightly better PSNR on Cuprite than Case 2, the

compression and decompression times are slightly higher.

5.7.2 Discussion

As seen in Table 5.4, training with three datasets in Case 1 achieves a marginally bet-
ter PSNR (14.09) on the Cuprite dataset compared to Case 2 (13.88). However, the
compression time in Case 1 is slightly longer (0.0317 seconds) than in Case 2 (0.0295
seconds). This indicates a trade-off between the diversity of the training data and the
computational efficiency of the model.

The decompression times are quite small in both cases, indicating that the meta-
learned model can reconstruct images rapidly, regardless of the size of the training
set. Notably, while the PSNR difference between the two cases is minor, the inclu-
sion of Pavia University in the training set seems to have contributed positively to
generalization, albeit with a slight increase in compression time.

These findings demonstrate the potential value of including diverse datasets in the
training phase to improve generalization to unseen datasets like Cuprite. However,
the marginal gain in PSNR suggests that further experimentation might be needed to

explore the optimal balance between training data diversity and computational cost.
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Case | Training Datasets Test Dataset | Compression Time (Sec) | Decompression Time (Sec) | PSNR (Test)
1 Indian Pines, Jasper Ridge, Pavia | Cuprite 0.0317 0.0016 14.09
2 | Indian Pines, Jasper Ridge Cuprite 0.0295 0.0010 13.88

Table 5.4: Ablative study results showing the effect of training with different datasets
on the compression performance when tested on the Cuprite dataset. The table pro-
vides a comparison of compression and decompression times, along with PSNR val-
ues for each test configuration.

5.8 Large dataset

We apply a large dataset to our meta-learned network, demonstrating that our method
is capable of compressing large images and performing progressive compression. To
manage the complexity of the data, we divide the image into 7 by 7 grids, effectively
treating each row as a separate cell. Each row is compressed using a distinct network
specifically customized to capture the unique characteristics and patterns of that row.
In total, we train seven networks, one for each row, ensuring that the model is tailored
to the data in each cell. characteristics and patterns of that row. The dataset used in
our experiments is substantial, with a size of 28.2 GB and dimensions of 4192 by 6708
pixels across 270 channels. This large-scale application not only validates the scalabil-
ity of our approach but also showcases its effectiveness in handling high-dimensional
data while maintaining compression efficiency and image quality. Additionally, the
flexibility of our method allows it to be adapted to various image sizes, making it a
versatile tool in image compression. The size of the compressed image with the meta-
leaned-based approach is 141 KB. Figure 5.3 shows an image of this dataset. In this
study, we compare the performance of our proposed method against ours-sampling-
32bit, ours-sampling-16bit, JPEG, and MPEG, with a focus on the (PSNR) achieved by
each method. Due to the size limitations inherent in JPEG compression, we divided
the image into smaller segments and applied JPEG compression to each piece sepa-
rately. The PSNR was then calculated for the recombined image. Table 5.5 shows this

comparison. Our method (meta-learning) achieves a PSNR comparable to both MPEG
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Meta Network

+

Modulations

Figure 5.3: Visualization of the dataset used in this study, consisting of images with di-
mensions 4192 by 6708 pixels and 270 channels. The dataset has a total size of 28.2 GB,
demonstrating the scale and complexity of the data processed by our meta-learned
network for image compression.

and JPEG while offering a significant reduction in bits per pixel per band (bpppb), re-

sulting in smaller compressed image sizes.

5.9 Conclusion

In this work, we use the meta-learned base network in which we train a base net-
work shared across hyperspectral images and apply modulations to this network to
parameterize individual hyperspectral images. Our system demonstrates substantial
enhancements in performance as compared to our previous methods [Rezasoltani and
Qureshi, 2023a, Rezasoltani and Qureshi, 2023b], namely in terms of compression and
encoding time. Furthermore, it remains competitive with existing codecs like JPEG,

JPEG2000, and PCA-DCT.
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method PSNR | bpppb | size(KB) |
meta-learning 23.40 | 4.6e-6 141
ours-sampling-32bit | 25.23 | 0.017 16133
ours-sampling-16bit | 25.23 | 0.008 7592
JPEG 20.21 | 0.242 229669
MPEG 25.20 | 0.024 22777

Table 5.5: Comparison of different image compression methods, including our
meta-learning approach, ours-sampling-32bit, ours-sampling-16bit, JPEG, and MPEG,
based on Peak Signal-to-Noise Ratio (PSNR), bits per pixel per band (bpppb), and
compressed file size (in bytes). The meta-learning method demonstrates a competi-
tive PSNR and significantly reduced file size compared to JPEG and MPEG.



Chapter 6

Region-Specific Image Compression

In many real-world applications, different regions of an image hold varying levels of
importance depending on the specific task or analysis being performed. The relevance
of a particular region is inherently task-dependent. For instance, in a hyperspectral
image capturing both a lake and a farmland, a researcher studying water quality may
prioritize spectral information from the lake, whereas an agricultural analyst assessing
crop health may focus on the farmland. This variability in importance suggests that
a compression scheme that treats all regions in an image the same may not be ideal.
This observation led us to explore a differential compression scheme that compresses
critical or high-importance regions with higher fidelity than regions that are perhaps
less relevant to the task at hand. Less important regions are compressed at a lower

quality, resulting in faster compression times.

The chapter is organized as follows. First, we demonstrate that it is possible to
achieve differential compression using implicit neural representation by controlling
the sampling rates for different regions. Next, we explore two schemes for selecting
regions of interest. Firstly, we use K-Means clustering to group pixels into contiguous
regions based upon spectral similarity. Next, we employ a U-net-based deep learning

model trained to segment aerial images into regions of interest. Both approaches seg-

162
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ment the hyperspectral images into distinct regions that are subsequently compressed

at different rates, showcasing the benefits of the approach developed in this chapter.

6.1 On Sampling and Compression Rates

Previously, we have shown that (1) it is possible to compress a hyperspectral image
using implicit neural representations and that (2) it is not necessary to consider ev-
ery pixel location when learning the mapping between pixel coordinates and pixel
spectra. Furthermore, it is possible to achieve high-quality compression even when
sampling a subset of pixels. An additional advantage of (2) is that it results in sig-
nificant savings in terms of compression times. Here, we take this idea further and
show that it is possible to train a single implicit neural network while using different
sampling rates in different regions of an image. Furthermore, the reconstruction qual-
ity of these regions depends upon the sampling rates used for these regions. Regions
where pixels were sampled more densely post low reconstruction errors, whereas re-
gions where pixels were sampled sparsely show higher reconstruction errors. We note
that compression times increase as sampling rates increase, which suggests that using
lower sampling rates in less important regions of the image may result in significant

time savings.

6.1.1 Experiments with Differential Compression

In order to study whether or not it is possible to perform differential compression by
leveraging varying sampling rates across different regions of a hyperspectral image,
we set up the following experiment. We take the four benchmarks that we have ac-
cess to—Indian Pines, Jasper Ridge, Pavia University, and Cuprite—and we split each
image into two halves. Next, we compress each hyperspectral image by fitting an im-

plicit neural network model as discussed previously. At training time, however, one
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of the two halves is sampled at 90% whereas the other half is sampled at 5%. The
purpose of this exercise is to confirm if it is possible to use a single implicit neural
network that maps pixel coordinates to their spectra under conditions where different

regions are sampled at different rates during learning (i.e., at compression time).

6.2 Hyperspectral Image Segmentation Using K-Means

K-means clustering is a widely used unsupervised learning algorithm that effectively
partitions data into distinct groups based on feature similarity. In the context of hyper-
spectral image segmentation, K-Means can be particularly valuable due to its ability to
handle the high-dimensional data characteristic of hyperspectral images [Macqueen,

1967].

The K-Means algorithm operates by initializing a predetermined number of clus-
ter centroids (K). It iteratively assigns each pixel to the nearest centroid based on a
distance metric (e.g., Euclidean distance). The algorithm aims to minimize the within-

cluster variance, which is mathematically expressed as:

K

T=Y % llxi—wuell® (6.1)

k=1 x;€Cy

where | represents the objective function, Cy is the set of points in cluster k, x; is
the i-th pixel, and py is the centroid of cluster k. During each iteration, each pixel x; is

assigned to the nearest cluster centroid based on the following rule:
e = {xi« i = pll® < llxi = 12V, 1 < j < K}, (62)

where Cy is the set of all pixels assigned to cluster k, after the assignments are made,
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the centroids are recalculated as the mean of the pixels within each cluster:

1
Wk = ] Y xi (6.3)

i€Ck

This process repeats until the centroids stabilize or the number iterations are ex-
hausted, leading to a final set of clusters [Grewal et al., 2023].

It is straightforward to apply K-Means clustering to hyperspectral images. The hy-
perspectral image is reshaped such that each row represents a pixel and each column
represents a spectral band. K-Means clustering is applied to the reshaped image, re-
sulting in a cluster label for each pixel. Pixels that belong to the same cluster exhibit
similar spectral signatures if spectral similarity is used as a distance measure during
the clustering process. We note that this process does not respect the spatial structure
present in an image. As such, the process may yield non-contiguous regions. How-

ever, in practice, the process yields contiguous regions.

6.2.1 Why K-Means for Hyperspectral Image Segmentation

In hyperspectral images, each pixel contains spectral information at several wave-
lengths, allowing detailed material identification and classification. By applying K-
Means clustering to hyperspectral data, it is possible to segment the image into dis-
tinct regions based upon spectral characteristics. Within this context, K-Means offers

a number of advantages:

¢ Simplicity: K-Means is straightforward to implement and computationally effi-

cient, making it suitable for real-time applications.

e Scalability: The algorithm scales well with the number of pixels and can be ap-

plied to large hyperspectral datasets.

¢ Interpretability: The resulting segments can be easily interpreted, as they corre-
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spond to distinct spectral classes.

K-Means clustering offers a lightweight scheme for grouping pixels together based
on their spectral characteristics. It is no wonder that K-Means clustering continues
to be widely used in the hyperspectral community to facilitate downstream analysis
tasks. For the purposes of the work proposed in this chapter, the proposed scheme is

able to compress these regions using different sampling rates.

6.3 Hyperspectral Image Segmentation using U-Net

To carry out the idea of differential compression further, we also experimented with a
U-Net-based model for hyperspectral image segmentation. U-Net is a popular choice
for image segmentation due to its ability to delineate objects in complex imagery. We
used the U-Net model developed to perform semantic segmentation in aerial images
[in the Loop, 2020]. The code is available at [Hajebi, 2020].

Once trained, the U-Net was applied to segment each hyperspectral dataset into
regions based on predefined classes of interest. This segmentation process can be for-
mulated as a pixel-wise classification problem. For each pixel x; in the hyperspectral
image, the U-Net predicts a class label y; € {1,2,...,C}, where C is the total number

of classes. The prediction for each pixel can be expressed as:

yi=arg _max P(y; =c | x;;0), (6.4)

where P(y; = ¢ | x;;®) is the probability that pixel x; belongs to class ¢, and © repre-
sents the model parameters.
U-Net provides segmentation masks that identify pixels representing different

e

“items,” “objects,” or “features.” This information can be subsequently used to iden-

tify regions of interest. It is then possible to treat these regions differently, compressing
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regions of interest in higher fidelity by controlling sampling rates appropriately.

6.3.1 U-Net Architecture and Customization for Aerial Image Seg-

mentation

The U-Net architecture, originally developed for biomedical image segmentation, ef-
fectively captures local and global image features. It follows an encoder-decoder de-
sign with skip connections, which enables the model to retain spatial resolution and

fine details during upsampling. The encoder path is defined as:
Ej=f(WixE1+by), (6.5)

where E; represents the output of the [-th encoder layer, W; and b; are the weights
and biases for that layer, * denotes the convolution operation, and f is the activation
function.

The decoder path reconstructs the segmentation map using upsampling layers and

concatenated skip connections:
Dy = f(W] + Upsample(D;11) + S; + b}), (6.6)

where D; is the output of the I-th decoder layer, S; is the skip connection from the
encoder, and W] and b are the weights and biases for the decoder layer.

Key modifications to the U-Net for aerial image segmentation included adjust-
ments to convolutional filter sizes and additional dropout layers to improve gener-
alization. The training process employed a categorical cross-entropy loss function,

defined as:
C

1Y X
L=—— Z Z Yic logyi,c, (6.7)
N i=1c=1

where N is the number of pixels in the training set, C is the number of classes, y; .
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is a binary indicator for whether pixel i belongs to class ¢, and 7; . is the predicted
probability for pixel i belonging to class c.

The modular design of U-Net was adapted to hyperspectral data by adjusting in-
put layers and the number of filters in each layer to handle additional spectral chan-
nels. By using U-Net, we segmented hyperspectral datasets into ROIs with high pre-
cision, feeding these regions into a task-aware compression pipeline. Critical spectral
details in the ROIs were preserved through high-fidelity compression, while back-

ground regions were compressed more aggressively to reduce overall data size.

6.4 Hyperspectral Image Compression using Sampling

and INR

In this section, we use INRs to compress the region of interest in the hyperspectral
image. The suggested compression technique comprises two stages. Step 1 does an
architectural search. The objective is to identify an MLP that attains the maximum
reconstruction accuracy within a specified bpppb budget. Architecture search is con-
ducted by overfitting various MLPs with differing quantities of hidden layers and
varying widths of hidden layers to the hyperspectral image. Architecture search,
however, results in extended compression durations. Step 2 entails quantizing and
archiving the parameters of the overfitted MLP onto disk.

The compression process entails overfitting a SIREN network fg to the region
of interest in a hyperspectral image I [Dupont et al., 2021]. The dimensions w
and h of the hyperspectral image are utilized to establish an input location grid on
[—1,41] x [-1,+1], and the MLP is trained to reconstruct the spectral signature of a
pixel based on its location. The parameters © of this overfitted MLP are quantized
as ©. The MLP architecture comprises the number of hidden layers 1y, the widths

of these layers wy, as well as the width w, height i, and number of channels c of the
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original hyperspectral image I, in conjunction with ®, which collectively function as
a compressed representation Iencoded Of the hyperspectral image I. Parameters O are
stored as either 32-bit floats or 16-bit floats. Training and inference necessitate 32-bit
floating-point numbers, while quantization and dequantization are executed to tran-

sition between 32 and 16 bit representations. The overfitted MLP comprises
(wp x 2) + (wy, x wy) "™V + (wy, % c) (6.8)

parameters.

The region of interest in the hyperspectral image is reconstructed from its com-
pressed encoding Iencodeq in the following manner: 1) Utilize ny,, wy, and c to recon-
struct fg; 2) Dequantize © to obtain ® and employ it to initialize the parameters of
fo; 3) Utilize the width w and height / to establish the input grid within the bounds
of [-1, +1] x [—1,41]; 4) Evaluate fg at each point in the input grid to reconstruct the

image I.

6.5 Algorithm for Task-aware Hyperspectral Image

Compression

In this section, we outline the step-by-step procedure of our task-aware hyperspectral
image compression method. The proposed algorithm leverages K-means clustering
in one part and U-net in another part to segment the image into regions of interest
(ROI) and background, ensuring that critical areas are preserved with higher fidelity
while less important regions are compressed more aggressively. The key challenge ad-
dressed by this approach is balancing compression efficiency with the need to main-
tain the spectral quality of essential regions. The method involves searching for an

optimal MLP architecture to encode the ROI, followed by a quantization step to fur-
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ther reduce storage requirements. Meanwhile, the background is compressed using
a simpler technique to minimize the bitstream size. During decompression, both the
ROI and background are reconstructed separately and then merged to generate the
final image. The following pseudocode summarizes the full process of task-aware

hyperspectral image compression.

6.5.1 Pseudocode of the Proposed Method

Algorithm 3 Algorithm for Task-aware Hyperspectral Image Compression

1: Input: Hyperspectral image I with dimensions (w, ki, )
2: Output: Compressed representation Iencoded
3: Step 1: Segmentation (K-means or U-Net)
Option A: K-means Clustering — Reshape I into a 2D array; initialize K clusters
4: repeat
5: Assign each pixel x; to the nearest centroid using C; = {x; : [|x; — > <
|x; — pj||*}; Update centroids: py = |é—k‘ Yxec, Xi
6: until Centroids converge
7: Generate mask M for ROI and background
Option B: U-Net Segmentation — Load pre-trained U-Net; preprocess I for input;
Generate mask M: y; = argmax. P(y; = c | x;;®); Divide I into ROI and back-
ground using M
8: Step 2: Architecture Search for ROI Compression
9: for each MLP structure (1, w;,) do
10: Initialize fg; train to minimize £ = ||Iror — fo(X)||?; Compute PSNR; if PSNR
meets threshold, select (1, wy,)

11: Step 3: Compression and Quantization — Train selected fg on ROL; quantize © —
©; Store lencoded, ROT = 10O, 1y, Wy, }

12: Step 4: Background Compression — Compress background region and store
Iencoded, BG . _

13: Step 5: Decompression — Load Ioncoded, RO1, dequantize ® — ©; Initialize fg; re-
construct grid [—1, +1] x [—1, 41]; Evaluate fg at each (x,y) inROL: y = f5(x,y);
Reconstruct background and combine with ROI to form T

The pseudocode outlines a task-aware hyperspectral image compression pipeline. Be-

low is a detailed breakdown:

* Segmentation (Step 1): This step isolates regions of interest (ROI) and back-
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ground to enable task-aware compression. Users can choose between:

- K-means Clustering (Option A): An unsupervised method that partitions
pixels into K clusters based on spectral similarity. Each pixel is assigned to

the nearest centroid using:
Cr = {xi : [l — el < i — wjll%, V), 1 < j < K} (6.9)

The centroids are updated iteratively:

1
- E X;, 6.10
223 |Ck| ) i ( )

i€Ck

until convergence, this approach is computationally efficient and suitable

when no labeled data is available.

— U-Net Segmentation (Option B): A supervised deep learning-based
method that employs a pre-trained U-Net model for high-precision seg-

mentation. The U-Net predicts the class label for each pixel:

y; = arg CE{Ill,lZa,.).(.,C} P(y; =c| x;0), (6.11)

leveraging its encoder-decoder structure with skip connections to generate

a segmentation mask that separates the ROI from the background.

* Architecture Search for ROI Compression (Step 2): The ROl is compressed us-
ing an implicit neural representation (INR). The algorithm performs a search for
the optimal multi-layer perceptron (MLP) structure, minimizing the reconstruc-

tion loss:

L = ||Iror — fo(X)| (6.12)

The compression quality is evaluated using the Peak Signal-to-Noise Ratio
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(PSNR), ensuring the preserved spectral details meet the required threshold.

¢ Compression and Quantization (Step 3): The selected MLP is trained on the

ROL. Its parameters are quantized:

O — 0, (6.13)

where 32-bit floating-point values are converted to 16-bit to reduce storage size
while maintaining fidelity, the compressed representation includes the quan-

tized parameters and the MLP architecture details.

* Background Compression (Step 4): The background region, being less critical
for downstream tasks, is compressed using a low-complexity algorithm to min-

imize the overall bitstream size.

* Decompression (Step 5): During decompression, the ROI and background are
reconstructed separately and combined to form the final image. The process

includes:

- Dequantizing the parameters:

O — 0, (6.14)

to initialize the MLP.

— Reconstructing the ROI by evaluating the MLP on an input grid:

y=fo(x,y). (6.15)

— Reconstructing the background and merging it with the ROI to generate the

tinal image I.
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This section presents a structured approach for task-aware hyperspectral image
compression. By employing segmentation and selective compression, this method
ensures that the critical spectral information in the ROI is preserved, while the back-
ground is efficiently compressed to minimize the total storage size. This makes the
approach particularly effective for applications where specific regions of interest are

more valuable than the entire image.

6.6 Experiments

In this thesis, we follow the established practice of utilizing Peak Signal-to-Noise Ratio
(PSNR) and Mean Squared Error (MSE) to assess the performance of the proposed
compression method, as described in Chapter 3. These metrics allow us to quantify
the quality loss between the original and compressed images. PSNR, expressed in
decibels, indicates how closely the compressed image resembles the original—higher
PSNR values correspond to higher image quality. Detailed descriptions of this metric,

along with the relevant equations, can be found in Chapter 3.

To evaluate the performance of our proposed method, we used five benchmark
datasets, as described in Chapter 3. These datasets—Indian Pines, Cuprite, Jasper
Ridge, Pavia University, and a large dataset—are widely used in hyperspectral im-
age compression research. Three of these datasets (Indian Pines, Cuprite, and Jasper
Ridge) were captured by NASA’s Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor, which gathers spectroradiometer data for surface characterization.
The Pavia University dataset was collected using the ROSIS (Reflective Optics System
Imaging Spectrometer), operated by the German Aerospace Centre. Detailed descrip-
tions of these datasets, including their dimensions and acquisition methods, can be
found in Chapter 3. The fifth dataset used in this chapter is the large dataset. The

large dataset used in this experiment is substantial, with a size of 28.2 GB and dimen-
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sions of 4192 by 6708 pixels across 270 channels.

6.6.1 Architecture Search

Considering an image and our parameter budget for the multilayer perceptron (MLP),
quantified in bits per pixel per band (bpppb), the primary objective is to determine
the MLP architecture—specifically, the quantity of hidden layers and their respective
widths—that can adequately represent the region of interest in a hyperspectral image
while achieving an acceptable peak signal-to-noise ratio (PSNR).

The MLP architecture is selected through hyperparameter optimization, which en-
tails training viable configurations with an appropriate number of hidden layers and
suitable width on a specific hyperspectral image. The outcome of this procedure is
a singular MLP capable of reconstructing the region of interest in the hyperspectral
image with the specified PSNR value. The parameters of the final MLP are quantized
to 16-bit precision, resulting in additional storage savings for representing the region

of interest in the hyperspectral image.

6.6.2 Encoding Considerations

Our approach is categorized as a “slow-encoding-fast-decoding” compression tech-
nique. The approach requires training, specifically overfitting, several MLPs during
the encoding (compression) phase. This is necessary to identify the MLP architecture
that most accurately depicts the area of interest in the hyperspectral image, consid-
ering a specific storage constraint. Decoding, however, necessitates the evaluation of
this MLP at many pixel places. The process of decoding is rapid. The “slow-encoding-
fast-decoding” characteristic of this technology renders it especially appropriate for
situations where the hyperspectral image is compressed solely at the time of capture.
Encoding is inherently computationally intensive, a factor that must be considered

when envisioning hyperspectral sensors that can compress hyperspectral images dur-
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ing capture, utilizing the suggested method. Our approach, as previously said, entails
model fitting, which is fundamentally stochastic. Consequently, during the iterative
phase, we retain the model parameters that have achieved the best PSNR value to

date.

6.6.3 Model Fitting

All our models have two inputs, and the number of outputs corresponds to the num-
ber of channels (or bands) in the region of interest of the hyperspectral image. The
activation function for hidden layers is sinusoidal. We initialized the MLP accord-
ing to the instructions outlined in [Sitzmann et al., 2020b]. The Adam optimizer was
employed during training, with a learning rate established at 2e-4. All studies were
performed on a desktop equipped with an Intel i7 processor and an Nvidia RTX 2080
GPU.

6.6.4 Results-Region-aware Hyperspectral Image Compression

In our first study in this chapter, we explore region-aware image compression, where
each dataset is divided into two regions, and different sampling rates are applied to
each part (Figure 6.1). Specifically, in our experiments, we used a 5 percent sam-
pling rate for the left side and a 90 percent sampling rate for the right side. As a
result, we observed distinct PSNR values for each region, highlighting the impact of
region-specific compression strategies (Table 6.1). This approach allows us to optimize
compression based on the significance of different regions within an image, ensuring
that more important areas are preserved with higher quality. The variations in PSNR
demonstrate the effectiveness of targeted sampling in improving compression effi-
ciency without sacrificing critical details. This technique lays the groundwork for our
next project, which focuses on task-aware compression, where compression param-

eters are further tailored to specific image analysis tasks, enhancing overall perfor-
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Figure 6.1: Region-aware image compression applied to four datasets—(from left to
right) Indian Pines, Jasper Ridge, Pavia University, and Cuprite. Each dataset is di-
vided into two regions with distinct sampling rates: 5 percent for the left side and
90 percent for the right side. The resulting PSNR values vary between the regions,
demonstrating the effectiveness of applying region-specific compression strategies.

Dataset Left Side PSNR | Right Side PSNR | PSNR
Indian Pines 33.82 33.15 33.47
Jasper Ridge 29.82 26.94 28.15

Pavia University 29.40 32.11 30.54

Cuprite 23.66 23.67 23.66

Table 6.1: PSNR comparison between the left and right regions of four
datasets—Indian Pines, Jasper Ridge, Pavia University, and Cuprite—following
region-aware image compression. The left side of each image is sampled at a lower
rate (5 percent), while the right side is sampled at a higher rate (90 percent). The re-
sulting PSNR values reflect the impact of differential sampling on image quality across
the regions, demonstrating the balance achieved between compression efficiency and
image fidelity.

mance.

6.6.4.1 Ablation Study on Region-Aware Compression Using the Pavia Dataset

In the presented study on region-aware hyperspectral image compression, we ex-
tended our experiments to the Pavia dataset, where we applied distinct sampling rates
to the image’s two regions to observe the resulting PSNR values. This dataset was di-
vided into two parts: the first region, referred to as Slice 1, was sampled consistently at
100 percent, while the second region, referred to as Slice 2, had its sampling rate var-
ied between 10 percent and 100 percent. The primary goal of this ablation study was
to assess how different levels of compression in the second region affected the overall
image quality and to compare the preservation of critical details in each region.

As seen in Table 6.2, the PSNR values for Slice 1 remain relatively stable as ex-



CHAPTER 6. REGION-SPECIFIC IMAGE COMPRESSION 177

pected due to the high sampling rate applied consistently. However, the PSNR values
for Slice 2 show significant improvement as the sampling rate increases. At a 10 per-
cent sampling rate, the PSNR for Slice 2 starts at 23.84 dB, whereas it rises to 26.21
dB at 100 percent. This suggests that as we allocate more resources to this region,
the image quality in that specific region improves markedly. However, the relatively
stable PSNR values for Slice 1 (around 26 dB) throughout the study demonstrate that
preserving quality in one region does not significantly impact the other region’s qual-
ity. This result reinforces the value of targeted compression techniques, particularly
when balancing compression efficiency with image quality in hyperspectral imaging
applications.

For further visual analysis, Figures 6.2 and 6.3 present reconstructed images of
the Pavia dataset across different sampling rates. These images clearly illustrate the
visual fidelity preserved across both regions, with noticeable improvements in detail
preservation in the second region as its sampling rate increases. The visual and quanti-
tative results of this study provide strong evidence that the region-aware compression
technique can be effectively used to prioritize important regions within hyperspectral

images without compromising overall quality.

6.6.5 Results-Task-aware Hyperspectral Image Compression using

K-Means

In our second study in this chapter, we explore task-aware compression. Table 6.3
presents a detailed overview of the PSNR (Peak Signal-to-Noise Ratio) for the region
of interest (ROI) across five hyperspectral image datasets, namely Indian Pines, Jasper
Ridge, Pavia University, Cuprite, and the large dataset. The PSNR for the ROI high-
lights the effectiveness of task-aware compression in maintaining high fidelity for the
most crucial parts of the image, where high-quality information is essential for specific

tasks such as segmentation or classification.
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Figure 6.2: Reconstructed images of the Pavia dataset for sampling rates of 10%, 20%,
30%, 40%, and 50% in Slice 2. The images show the increasing quality of Slice 2 with
higher sampling rates.
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Figure 6.3: Reconstructed images of the Pavia dataset for sampling rates of 60%, 70%,
80%, 90%, and 100% in Slice 2. These images demonstrate the continued improvement
in Slice 2 as the sampling rate approaches 100%.
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Slice 2 Sampling Rate | Slice 1 PSNR | Slice 2 PSNR
10 26.72 23.84
20 26.60 24.72
30 26.51 25.22
40 26.49 25.54
50 26.23 25.69
60 26.17 25.79
70 26.25 25.95
80 26.06 26.12
90 26.06 26.15
100 25.99 26.21

Table 6.2: PSNR values for the Pavia dataset with varying sampling rates applied to
Slice 2. Slice 1 was consistently sampled at 100 percent. The table shows the impact of
differential sampling on the image quality of each region, illustrating the relationship
between compression rate and PSNR.

Additionally, the table provides the PSNR for the entire image, which serves as
an indicator of overall image quality post-compression. This metric is essential in as-
sessing the trade-off between focusing on the ROI and preserving acceptable quality
across the rest of the image. The bpppb (bits per pixel per band) quantifies the effi-
ciency of the compression, reflecting how much data is retained per pixel, per spectral

band after applying our method.

Moreover, the table includes the size of the compressed image in comparison to its
original size, showcasing the significant reduction in storage requirements achieved
through the task-aware approach. By strategically compressing different regions at
varying levels, our method allows for a substantial decrease in the total size of the
compressed image while preserving critical information quality in regions that are
task-sensitive. This approach demonstrates the viability of our method for practi-
cal use in hyperspectral image compression, where both storage efficiency and task-

specific image quality are important considerations.
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Dataset PSNR-ROI | PSNR | bpppb-ROI | bpppb | Compressed-size (KB) | Original-size (KB)
Indian Pines 42.28 25.94 0.072 0.28 332.6 9251
Jasper Ridge 38.21 13.62 1.54 0.59 333.5 4800

Pavia University 37.67 20.40 0.14 0.05 304 42724

Cuprite 37.54 22.03 0.08 0.01 333.5 140836

Large dataset 38.05 16.89 7.06 0.008 344.8 2.82e+7

Table 6.3: PSNR (Peak Signal-to-Noise Ratio) for the region of interest (ROI) and the
entire image for five hyperspectral datasets. The table also includes the bits per pixel
per band (bpppb), the size of the compressed image, and the original image size.

6.6.5.1 Visual Representation of Task-Aware Compression

For each of the five hyperspectral datasets—Indian Pines, Jasper Ridge, Pavia Uni-

versity, Cuprite, and the large dataset—three images are provided to visually illus-

trate the process and results of the task-aware compression (Figure 6.4). These images

highlight both the original data and the impact of the compression method:

* Original Image: This image represents the uncompressed version of the hyper-
spectral dataset, showing the full spectral and spatial content before any com-

pression is applied.

Region of Interest (ROI): This image indicates the region within the hyperspec-
tral data that is most critical for specific tasks, such as classification or segmenta-
tion. The highlighted region reflects where higher fidelity is maintained during

the compression process.

Reconstructed Image: This image shows the result of the task-aware compres-
sion and reconstruction. While the region of interest retains high visual quality
and fidelity, the non-essential regions of the image are compressed more aggres-
sively, demonstrating the trade-off between compression efficiency and image

quality.

These images offer a clear visualization of how task-aware compression prioritizes

regions of interest while optimizing overall data size, preserving essential information
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where it is most needed for task-specific analysis.

6.6.6 Results-Task-aware Hyperspectral Image Compression using

U-Net

In our third study in this chapter, we explore task-aware compression using U-Net.
We conducted experiments on five hyperspectral datasets—Pavia University, Jasper
Ridge, Indian Pines, Cuprite, and the Large dataset. For each dataset, we performed
segmentation, applied task-aware compression, and reconstructed the images. Fig-
ures 6.5 present the original images, segmented regions, and reconstructed images,
allowing for a visual assessment of the compression effectiveness and fidelity preser-
vation within the segmented ROIs.

The performance metrics, including PSNR for both the region of interest (ROI) and
the full image, bits per pixel per band (bpppb) in the ROI and overall, and compressed
and original image sizes, are summarized in Table 6.4. These metrics provide insights
into the trade-offs between compression efficiency and quality preservation across dif-

ferent datasets.

Dataset PSNR-ROI | PSNR | bpppb-ROI | bpppb | Compressed-size(KB) | Original-size(KB)
Indian Pines 35.07 25.46 0.66 0.28 332.6 9251
Jasper Ridge 26.43 13.79 2.11 0.59 333.5 4800

Pavia University 32.39 21.28 0.140 0.05 304.0 42724

Cuprite 26.21 23.75 0.040 0.018 333.5 140836

Large dataset 36.009 27.82 0.180 0.008 344.8 2.82e+7

Table 6.4: Performance metrics for task-aware compression on five hyperspectral
datasets. The table includes PSNR values for the region of interest (ROI) and the full
image, bits per pixel per band (bpppb) for both the ROI and full image, and com-
pressed and original image sizes.

The results in Table 6.4 highlight the efficiency and quality of our task-aware com-
pression approach across diverse datasets. Each dataset exhibits a significant increase

in PSNR within the segmented region, confirming that our method effectively pre-
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serves critical spectral information in the regions of interest, which is essential for
task-specific applications.

For example, the Indian Pines dataset achieved a PSNR of 35.07 for the ROI, sub-
stantially higher than the overall image PSNR of 25.46. This indicates that the method
successfully applies more aggressive compression to the background while maintain-
ing high fidelity within the segmented ROI. Similarly, the Pavia University dataset
achieved a PSNR of 32.39 in the ROJ, significantly exceeding the overall PSNR of 21.28,
further validating the effectiveness of our selective compression strategy.

The large dataset stands out due to its high PSNR in the ROI (36.009) and full
image PSNR of 27.82, demonstrating the method’s ability to maintain spectral quality
even for substantial data sizes. Additionally, the large dataset achieves an extremely
low bpppb of 0.008 for the overall image, reflecting impressive data reduction without
compromising essential information in the ROL

The varying bpppb values for the ROIs and full images further illustrate the ef-
ticiency of this approach. The lower bpppb values for the full image compared to
the segmented regions reflect the aggressive compression applied to the background,
which significantly reduces data size while preserving necessary spectral details in the
ROL. The large dataset’s low bpppb value of 0.008 demonstrates the method’s scala-
bility and efficiency for high-volume data.

Overall, these results demonstrate that our task-aware compression method suc-
cessfully balances compression efficiency and spectral fidelity, making it suitable for

hyperspectral applications that prioritize specific regions of interest.

6.6.6.1 Conclusion

In this chapter, we demonstrated a task-aware hyperspectral image compression
method that leverages segmentation to distinguish and prioritize critical regions

within hyperspectral datasets. By using U-Net for semantic segmentation, we effec-
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tively identified ROIs in each dataset and applied differential compression to maintain
high fidelity in task-relevant areas. The results indicate that this method achieves sig-
nificant data reduction while preserving essential information in the ROI, making it
highly suitable for applications where storage efficiency and task-specific data quality

are crucial.

6.6.7 Limitations of Traditional Compression Methods

Conventional image compression methods, such as JPEG and JPEG2000, though
widely used for compressing 2D images, are not suited for hyperspectral image data
due to their fundamental design. JPEG and JPEG2000 are optimized for natural im-
ages (RGB) with three color channels, and they work by reducing spatial redundancies
using techniques like Discrete Cosine Transform (JPEG) or wavelet-based approaches
(JPEG2000). These methods are primarily spatial-based and lack the ability to han-
dle the complex spectral correlation present in hyperspectral images, which contain
hundreds of spectral bands [Babu et al., 2015].

Hyperspectral images are fundamentally different, as they consist of a high-
dimensional spectral signature at each pixel, which requires specialized treatment of
both spatial and spectral redundancies [Dua et al., 2020]. JPEG and JPEG2000 are not
designed to prioritize certain regions of interest (ROI) based on task requirements, nor
do they provide a framework for adapting compression rates in specific regions based
on their importance for downstream tasks like classification or segmentation. As a
result, these methods perform uniform compression across the entire image, which is

suboptimal for task-aware scenarios.

6.6.7.1 Role of Implicit Neural Representations

In contrast, our proposed task-aware hyperspectral image compression method lever-

ages implicit neural representations (INRs) to achieve a level of flexibility and adapt-
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ability that traditional methods cannot match. Implicit neural representations model
the image as a continuous function, allowing for a more fine-grained, task-specific fo-
cus on regions of interest without relying on explicit pixel-based storage. By encoding
the hyperspectral image as a neural network that learns to represent both spatial and
spectral correlations, our method inherently supports task-aware compression.
Unlike traditional techniques, which treat all parts of the image uniformly, INRs
allow us to allocate different levels of compression fidelity based on the task’s spe-
cific needs. This is particularly critical for hyperspectral data, where certain regions
of the image—those crucial for classification, material identification, or anomaly de-
tection—require higher fidelity than others. The task-aware nature of the proposed
method ensures that critical information in the region of interest is preserved with
high precision, while less important regions can be compressed more aggressively,

which is not feasible using methods like JPEG or JPEG2000.

6.6.7.2 Infeasibility for Traditional Methods

The inability of traditional methods like JPEG and JPEG2000 to handle task-aware
hyperspectral compression is evident from several factors. First, they lack the flexi-
bility to apply non-uniform compression rates across different regions of the image.
Task-aware compression requires selectively compressing different parts of the image
based on their importance for specific tasks, and this requires an adaptive mechanism
that can identify and prioritize important regions. Neither JPEG nor JPEG2000 offers
such an adaptive, task-driven framework, as their compression techniques are rigid
and global.

Furthermore, hyperspectral images contain information across hundreds of bands,
and traditional methods struggle to efficiently compress this high-dimensional data.
JPEG2000, which provides some improvements over JPEG in handling more complex

images, is still fundamentally designed for RGB images and lacks mechanisms to ad-
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dress the spectral redundancy present in hyperspectral data. As a result, the PSNR
values achieved for hyperspectral data using JPEG2000 are significantly lower com-
pared to those obtained with task-aware methods like ours that incorporate implicit
neural representations.

The success of our method in preserving the quality of task-critical regions while
achieving high compression ratios across non-essential areas demonstrates that tra-
ditional methods cannot match this level of performance. This makes implicit neural
representations an essential tool for task-aware compression, as no existing traditional

technique offers the same degree of flexibility and task-specific optimization.

6.7 Conclusion

In this work, we proposed a task-aware hyperspectral image compression method
designed to optimize the balance between data reduction and the preservation of task-
critical regions. By leveraging the concept of region of interest (ROI), the method
prioritizes compression in a way that maintains high fidelity in regions essential for
specific tasks, such as classification or segmentation, while compressing non-essential
regions more aggressively to achieve a substantial reduction in storage size.

Our experimental results, presented across five benchmark hyperspectral
datasets—Indian Pines, Jasper Ridge, Pavia University Cuprite, and the large
dataset—demonstrate the effectiveness of the proposed approach. The PSNR values in
the region of interest confirm that the quality of the task-sensitive areas is preserved,
while the PSNR for the entire image reflects a reasonable trade-off between global
quality and compression efficiency. The bits per pixel per band (bpppb) and com-
pressed image sizes show significant reductions in data volume, further supporting
the practicality of the method for real-world applications where storage or transmis-

sion bandwidth is limited.



CHAPTER 6. REGION-SPECIFIC IMAGE COMPRESSION 187

Moreover, the visual representations of the original images, region of interest, and
reconstructed images illustrate how task-aware compression can maintain image in-
tegrity where it matters most, while allowing for aggressive compression in less criti-
cal regions. This method proves particularly useful for scenarios where accurate task
performance is more important than preserving the quality of the entire image, such
as in remote sensing, medical imaging, and hyperspectral analysis for object detection.

Overall, the results indicate that the task-aware approach is an effective solution
for hyperspectral image compression, offering a balance between high compression
ratios and the preservation of critical image information. This method holds great
potential for applications requiring efficient storage and transmission without com-

promising the quality necessary for downstream tasks.
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Figure 6.4: Visual representation of task-aware compression for five hyperspectral
datasets. Each row corresponds to a dataset (Indian Pines, Jasper Ridge, Pavia Uni-
versity, Cuprite, large dataset), showing the original image (left), the region of interest
(middle), and the reconstructed image after compression (right). The region of inter-
est is preserved with high fidelity in the reconstructed images, while non-essential
regions are more aggressively compressed.
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Figure 6.5: Task-aware compression results for five hyperspectral datasets. Each row
corresponds to a dataset (Indian Pines, Jasper Ridge, Pavia University, Cuprite, Large
dataset) with columns representing the original image, the segmented region of inter-
est, and the reconstructed image after task-aware compression.



Chapter 7

Conclusions

In this thesis, we focused on developing and exploring innovative methodologies to
address the challenges of hyperspectral image compression. Hyperspectral data, with
its high dimensionality and vast spectral bands, presents unique challenges that tra-
ditional compression techniques often struggle to manage efficiently. Recognizing the
limitations of existing methods, we proposed new approaches that leverage advanced
neural networks to handle both the complexity and scale of this data. Central to our
work was the concept of implicit neural representations (INRs), which offer a compact
and effective way of mapping spatial coordinates to spectral values, thereby reducing

the storage burden while maintaining high image quality.

The use of INRs in this context provides a fundamentally different approach com-
pared to conventional methods. Traditional algorithms treat each pixel’s spectral val-
ues as independent hyperspectral images, often resulting in either loss of spectral fi-
delity or computational inefficiencies. By adopting INRs, we capture the underlying
relationships between pixels and bands, encoding them in a neural function that can
be stored efficiently. This novel approach allows us to represent hyperspectral im-
ages in a continuous space, ensuring that the compression is not only efficient but also

flexible enough to accommodate complex data patterns.

190
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Another significant focus of our research was achieving a delicate balance between
compression efficiency and image fidelity. Hyperspectral images are often used in
critical applications, such as environmental monitoring, remote sensing, and scientific
research, where the accuracy of the spectral data is paramount. Any loss of quality
could jeopardize subsequent analysis or decision-making processes. Therefore, it was
essential to develop a methodology that minimized data loss during compression,
preserving the critical spectral information necessary for accurate interpretation.

Through our experiments and evaluations, we demonstrated that the combination
of INRs with meta-learning techniques provides a powerful framework for hyper-
spectral image compression. Even at high compression rates, our approach retains the
integrity of the data, ensuring that the compressed images remain usable for analytical
tasks. This research contributes to the field by showing that modern neural techniques
can overcome the inherent limitations of traditional compression schemes, paving the
way for more scalable and efficient solutions for managing hyperspectral data.

Throughout this thesis, several key contributions have been made to advance the

field of hyperspectral image compression:

¢ Implicit Neural Representation (INR) for Compression: We introduced the con-
cept of using implicit neural representations for hyperspectral image compres-
sion. This novel approach learns a function that maps spatial coordinates to
spectral values, reducing data size while achieving competitive PSNR values.
Our experiments demonstrated that INR-based compression offers superior per-

formance over traditional methods, particularly at low bit rates.

¢ Sampling-based Compression Technique: To address the computational burden
of encoding large hyperspectral images, we proposed a sampling strategy. This
method applies differential sampling rates to different regions, speeding up the
encoding process while maintaining high reconstruction quality. This sampling

approach was evaluated across multiple datasets and showed promising results
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in reducing compression time without compromising accuracy.

* Meta-learning for Hyperspectral Compression: We developed a meta-learning-
based approach to overcome the limitations of separate training for each image.
By learning a base network with a shared structure, we enabled faster encoding
through modulations applied to this network. This method significantly reduces

encoding time and offers a practical solution for large-scale image datasets.

¢ Task-aware and Region-aware Compression: Our research introduced task-
aware compression, prioritizing critical regions according to specific tasks like
classification or segmentation. Additionally, we employed region-aware com-
pression, applying higher sampling rates to more important areas. These ap-
proaches demonstrated their effectiveness in optimizing storage without sacri-
ticing essential information, proving their applicability in fields such as remote

sensing and environmental monitoring.

¢ Comprehensive Evaluation and Comparison: We thoroughly evaluated our
methods using four benchmark datasets—Indian Pines, Jasper Ridge, Pavia Uni-
versity, and Cuprite—and a large-scale dataset. Our proposed techniques con-
sistently outperformed traditional methods such as JPEG, JPEG2000, and PCA-
DCT in terms of PSNR and SSIM metrics. Furthermore, we achieved superior

compression ratios with reduced storage requirements.

In conclusion, this thesis provides a comprehensive exploration of cutting-edge
methodologies for hyperspectral image compression, with a particular focus on lever-
aging implicit neural representations, meta-learning, and task-aware techniques. The
approaches developed throughout this research not only address the challenges of
compressing large-scale hyperspectral data but also offer solutions that balance effi-
ciency, quality, and adaptability. Through our extensive evaluation across multiple

datasets, we demonstrated that modern neural techniques could outperform tradi-
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tional compression methods, setting a new benchmark for future research. The con-
tributions presented here form a robust foundation for further innovation, with broad
applicability across various domains such as remote sensing, environmental monitor-
ing, and scientific research. Moving forward, these advancements open new doors
for real-time data processing, ethical data management, and energy-efficient archi-
tectures, ensuring that hyperspectral imaging remains a vital tool in addressing the

challenges of tomorrow.



Chapter 8

Limitations and Future work

While the methodologies proposed in this thesis have demonstrated significant ad-
vancements in hyperspectral image compression, there remain challenges and oppor-
tunities for further exploration. Hyperspectral imaging continues to evolve, with in-
creasing demands for higher data quality, real-time processing, and domain-specific
adaptations. As technology advances, it is essential to refine and extend the proposed
approaches to meet the emerging requirements across various fields. This chapter out-
lines the key limitations of our current work and identifies promising directions for
future research. We discuss the potential for expanding the meta-learning framework,
the need for adaptive compression techniques, and the challenges in scaling our meth-
ods to real-time applications. Additionally, we address the ethical and computational
considerations associated with large-scale compression and explore opportunities to
apply these techniques in emerging fields. Each of the following sections delves into
specific aspects of these limitations and future directions, providing a roadmap for

ongoing research in this domain.
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8.1 Extending the Meta-Learning Framework to Other
Types of Imagery

While this thesis focused on hyperspectral image compression, the principles and
methodologies developed, particularly the meta-learning framework, can be extended
to other forms of imaging, such as multispectral or medical images. Multispectral data
shares similarities with hyperspectral images, albeit with fewer spectral bands, and is
widely used in fields like agriculture, remote sensing, and environmental monitoring.
Applying meta-learning to multispectral data could further improve compression per-
formance for datasets with different spectral characteristics. Similarly, medical imag-
ing encompasses a variety of data types, including MRIs, CT scans, and ultrasounds,
which require compression to efficiently manage storage and transmission. Extend-
ing our framework to medical imaging would not only improve storage but also en-
sure rapid access to large datasets, facilitating real-time diagnostic support. Future re-
search could tailor the neural compression models to meet the specific needs of these

domains, such as the need for lossless compression in sensitive medical applications.

8.2 Investigating Adaptive Compression Techniques

A promising area for future research lies in the development of adaptive compres-
sion techniques. Current methods, including the ones proposed in this work, apply
tixed compression parameters across entire datasets or image regions. However, real-
world images exhibit a wide range of complexities and characteristics. An adaptive
approach could dynamically adjust compression parameters based on the content of
each region or band within the image, optimizing the trade-off between compression
ratio and quality. For example, less critical areas in an image could undergo higher

compression, while key regions (such as objects of interest) could retain higher fidelity.
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Research could also explore content-aware neural architectures that learn to prioritize
different regions during the compression process, reducing redundant information

while preserving crucial details for analytical tasks.

8.3 Enhancing Scalability for Real-Time Data Streams

One of the major limitations of the current work is the focus on static datasets. Scal-
ability to real-time data streams remains a challenge, especially for applications like
satellite-based remote sensing, autonomous vehicles, and real-time monitoring sys-
tems. These applications generate vast amounts of data continuously, requiring effi-
cient methods for both compression and immediate processing. Future research could
focus on developing incremental learning techniques that allow the model to update
as new data becomes available, without the need to retrain from scratch. Moreover,
implementing compression methods that can run on edge devices would enable real-
time decision-making for autonomous systems, such as drones or self-driving vehi-

cles, without relying heavily on cloud infrastructure.

8.4 Ethical and Social Implications of Hyperspectral Im-
age Compression

As hyperspectral data becomes more widely used, ethical and social considerations
surrounding its compression and usage must also be explored. When compression is
applied to sensitive data, such as personal information in medical or biometric images,
there is a potential risk of compromising privacy. Lossy compression, while efficient,
could unintentionally alter critical details, raising questions about the reliability of
decisions made using the compressed data. Future research must develop privacy-

preserving compression frameworks that balance data reduction with security and
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privacy requirements. Additionally, regulatory and ethical guidelines may need to be
established to govern the use of compressed hyperspectral data in various domains,

ensuring that decisions made using this data are both fair and transparent.

8.5 Developing More Robust Compression Algorithms

The proposed methods, although effective, are still susceptible to challenges such as
overfitting, compression artifacts, and performance degradation at extremely high
compression ratios. Addressing these limitations will require the development of
more robust neural architectures that can generalize across a wider variety of datasets
and conditions. Future research could investigate hybrid compression techniques that
combine traditional approaches like JPEG2000 with deep learning methods to achieve
better performance. Additionally, ensemble learning techniques could be explored to
improve model robustness, ensuring consistent results across datasets with varying

characteristics.

8.6 Integrating the Model into Next-Generation Hyper-
spectral Sensors

An exciting direction for future research is the integration of neural compression
models, such as the one proposed in this thesis, directly into the pipeline of next-
generation hyperspectral sensors. Traditionally, hyperspectral sensors capture and
store raw data onboard before transmission or offline processing. However, the in-
creasing spatial and spectral resolution of modern sensors poses substantial storage
and bandwidth challenges. Embedding lightweight, learnable compression modules
within the sensor system—potentially at the hardware or firmware level—could en-

able on-the-fly compression, reducing data transmission costs and allowing real-time
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decision-making in the field.

The coordinate-based structure of Implicit Neural Representations (INRs) offers a
natural fit for such integration. Since INRs map coordinates to spectral values with
compact model parameters, they can be employed in low-memory environments, in-
cluding edge computing platforms or field-deployable sensing units. Additionally,
with a meta-learned base network that generalizes across various scenes, the model
could adapt rapidly to different sensing contexts without requiring full retraining on-
board.

To realize this potential, future work should focus on optimizing INR architec-
tures for low-latency inference, reducing model size via pruning or quantization, and
exploring hardware-friendly neural operations (e.g., replacing sinusoidal activations
with approximations that are more efficient to compute on embedded platforms).
Close collaboration with hardware designers and sensor manufacturers will be nec-
essary to co-design systems where neural compression models are natively supported

during data acquisition.

8.7 Extending the Framework to Region-Aware Com-
pression

Another promising avenue for future research is the development of a region-aware
compression framework based on the current model. In many real-world applica-
tions, not all parts of a hyperspectral image carry equal importance. For instance,
regions containing objects of interest (e.g., vehicles, vegetation, or minerals) may re-
quire higher reconstruction fidelity, while background areas or homogeneous regions
can tolerate more aggressive compression.

Extending the current approach to support region-aware or task-aware compres-

sion would involve dynamically adjusting the model’s sampling rate, network capac-
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ity, or loss weighting based on semantic segmentation, object detection, or saliency
analysis. For example, features from a pretrained detection model could guide the
INR-based compression to allocate more representation capacity to regions deemed
important for downstream tasks, such as classification or anomaly detection.

Moreover, the meta-learning framework lends itself naturally to region-aware
adaptation. By conditioning the base network or modulation parameters on region-
specific metadata or masks, the model can fine-tune its representation locally while
maintaining global coherence. Future work could explore integrating attention mech-
anisms, spatial priors, or auxiliary task supervision (e.g., via segmentation labels) to
guide this process.

Such a region-aware extension would improve the interpretability, utility, and ef-
ficiency of the compression model, especially in applications where computational
resources are limited but accurate information retrieval in critical regions is essential.
This could have a substantial impact on domains like precision agriculture, surveil-
lance, and geological surveys, where selective fidelity is often more valuable than uni-

form quality across the scene.

8.8 Addressing Computational Efficiency and Energy
Consumption

While our methods offer significant improvements in compression quality and speed,
the computational demands of neural networks remain a bottleneck, particularly for
large-scale datasets. Training and inference processes consume substantial amounts
of energy, which may pose environmental and economic concerns, especially when
deployed at scale. Future research should explore energy-efficient neural architectures
and hardware optimizations, such as the use of specialized processors like GPUs and

TPUs, to reduce the environmental impact of compression algorithms. Additionally,
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research into quantized neural networks or pruning techniques could offer ways to
reduce the computational footprint without sacrificing performance, enabling faster

and more efficient compression on constrained devices.

8.9 Exploring Compression for Emerging Applications

Finally, future research could focus on applying the proposed methodologies to
emerging domains that require large-scale data management, such as urban planning,
climate modeling, and space exploration. These fields generate enormous amounts
of hyperspectral data, and efficient compression is essential to store and analyze this
data effectively. Another promising direction could be the integration of hyperspectral
compression techniques with generative models, such as diffusion models or genera-
tive adversarial networks (GANSs), to reconstruct missing data and enhance the quality
of compressed images further. This approach could unlock new possibilities in data
synthesis, restoration, and augmentation, expanding the scope of hyperspectral image

analysis.

8.10 Summary

In summary, while this thesis offers novel contributions to the field of hyperspectral
image compression, there remain several exciting challenges and avenues for future
exploration. Expanding the applicability of our methods to other imaging domains,
developing adaptive and scalable compression techniques, and addressing ethical
considerations are essential steps in advancing this research. As hyperspectral imag-
ing continues to play a crucial role in various fields, including environmental moni-
toring, autonomous systems, and medical diagnostics, it is critical to develop robust,
efficient, and responsible compression frameworks. Future work in this direction has

the potential to not only optimize data management but also unlock new possibilities
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in real-time analysis and application-specific processing, ensuring that hyperspectral

technologies remain relevant and impactful in the years to come.
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