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Abstract

In this work we introduce AeCSAD, a student–teacher framework designed to detect two

types of anomalies in images of industrial components: structural anomalies (physical de-

fects) and logical anomalies (incorrect relationships between components). Unlike prior

methods, AeCSAD extends the component segmentation–based logical anomaly detec-

tion scheme (c. 2024) with self-attention mechanisms, enabling more effective relational

modeling. We demonstrate consistent improvements on the MVTec LOCO Anomaly

Detection benchmark. Specifically, AeCSAD employs a global student network with

self-attention for reasoning across distant components, complemented by a local student

network for fine-grained analysis. Additionally, a patch histogram module measures the

frequency distribution of components, allowing the system to detect irregularities in their

occurrence. During inference, anomaly scores from the histogram module and the fused

local–global networks are combined to produce the final anomaly score. Experiments

show that AeCSAD achieves superior average AUROC performance on both structural

and logical anomaly detection tasks compared to prior approaches.

Keywords: industrial visual inspection; logical anomaly detection ; self-attention

mechanism; student-teacher architect;
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Chapter 1

Introduction

The modern world is sustained by industries that drive economic growth, technological

advancement, and societal development. Among these, manufacturing industries form

a backbone, enabling the production of goods, infrastructure, and essential technolo-

gies [1]. As industrial systems become increasingly complex and interconnected, ensur-

ing their efficiency has become a central concern [2]. Even when these industrial systems

are designed with precision, real-world operations often face unpredictable influences [3].

Small shifts in material properties, mistakes in how components are put together, miss-

ing pieces, unexpected objects entering the system, or gradual damage over time can

all disturb normal behavior. These unexpected changes, referred to as anomalies, can

seriously affect the performance, safety, and quality of industrial processes. Given the

consequences of undetected anomalies, the ability to identify them has become essen-

tial for maintaining operational integrity. This critical need has given rise to the field of

Anomaly Detection (AD), which focuses on recognizing patterns of behavior that deviate

from expected norms [4].

1
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1.1 Industrial Settings for Anomaly Detection

In many industrial settings, the ability to detect anomalies through images is crucial

not only for identifying visible defects, such as surface damage, but also for uncovering

logical inconsistencies, such as misplaced objects [5]. In this thesis, we define indus-

trial settings as manufacturing and assembly environments characterized by controlled

imaging conditions. These environments typically include automated or semi-automated

inspection systems that analyze images of object assemblies or parts with well-defined

structural, spatial, or relational layouts. Defects in such settings are rare but diverse, and

the systems are expected to maintain low false alarm rates while detecting both physical

defects and semantic inconsistencies. Within this context, our work focuses on enhancing

the performance of visual inspection systems in these settings through Visual Anomaly

Detection (VAD) [6] which refers to analyzing images or videos to detect instances where

the observed visual characteristics diverge from the learned normal cases [4]. Figure 1.1

presents a high-level overview of a VAD.

The process begins with the extraction of representative features from input and test

image that capture the visual characteristics of the scene. During training, only normal

samples are used to model the expected appearance and behavior of components. At

test time, newly observed images are compared with the learned normal patterns using

various anomaly scoring techniques such as L2 distance (measuring pixel-wise or feature-

wise deviations), Cosine similarity (assessing angular differences in feature space), or

reconstruction error (evaluating the discrepancy between the original image and its re-

constructed version. The resulting anomaly map and score are then processed through

decision heuristics to determine whether the observed deviation constitutes, e.g., physical

damage or semantically inconsistent elements. As illustrated in the overview, the final

stage of the detection process involves interpreting the nature of the anomaly, which re-

quires a clear distinction between fundamentally different types of anomaly. Recognizing

these anomalies is critical, as the nature of an anomaly often determines the most effec-
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Trained using only normal data
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Anomaly Classification
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Figure 1.1: High-level overview of a visual anomaly detection pipeline. The system ex-
tracts features from input images and uses normal training data to learn typical patterns.
At test time, anomaly scores and maps are produced and classified as either structural
or logical anomalies using heuristic-based decision logic.

tive strategies for its detection. Consequently, two important subcategories of anomalies

arise, namely structural anomalies and logical anomalies.

1.2 Structural and Logical Anomalies

Structural anomalies are linked to geometrical properties. The geometrical properties

describe the shapes, proportions, and structural patterns that objects maintain under

normal conditions. This type of anomaly typically manifest as visible distortions, ir-

regular shapes, abnormal textures, or misalignments within an object’s structure [6].

An example of structural anomaly is shown in Figure 1.2. The detection of structural

anomalies focuses on identifying these disruptions by modeling and analyzing the normal

geometric consistencies found in non-defective samples [7].

On the other hand, logical anomalies arise when the relationships, arrangements, or

sequences among multiple visual elements violate the expected logical pattern. In this

context, logical refers to the correctness of how multiple objects or components of objects

are connected, combined, or ordered according to predefined rules [5]. Unlike structural
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Figure 1.2: Examples from the MVTec LOCO AD dataset [5] showing normal, structural,
and logical states in two categories: pushpins and breakfast box. The top row illustrates
a correct pushpin layout, a structurally damaged pushpin, and a logical error with two
pushpins in one slot. The bottom row shows a complete breakfast box, a damaged
mandarin, and a missing granola section despite other components being present.

anomalies, which typically affect the physical form of individual components, logical

anomalies concern inconsistencies between visual objects that may appear visually correct

in isolation but are incorrect when considered together. A small subset of examples of

logical anomaly is shown in Figure 1.2. Detection of logical anomalies therefore focuses

on identifying such inconsistencies in rules and contextual meanings within visual data

by flagging instances where these relationships are disrupted even when individual parts

may not exhibit obvious physical defects [7].

1.3 Problem

The early development of industrial anomaly detection methods focused primarily on

the identification of structural anomalies [8, 9] using Convolutional Neural Network

(CNN) [10] based architectures. CNNs are a class of deep learning models designed

to extract local spatial patterns from images using learnable convolutional filters. CNNs

are well suited for detecting structural anomalies since CNN constructs receptive field
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over images that spans neighboring pixels, enabling them to capture local spatial pat-

terns in an image. A receptive field refers to the specific region of an image that a CNN

“sees” during processing and enables it to recognize localized structures such as edges,

corners, textures, and simple part arrangements. As long as the essential information

required to recognize the inconsistencies is isolated, non-relational, and contained within

these local neighborhoods, CNN based architectures are effective [11]. However, logical

inconsistencies are relational and often exist in distant but connected regions of an image

causing CNN based architectures to fail to detect logical anomalies.

1.3.1 CNN Architectures as Structural Anomaly Detectors

Visual data inherently contains spatially structured information, where the arrangement,

relative positions, and textures convey essential details about object conditions and pat-

terns [12] and effective anomaly detection therefore demands models capable of capturing

and interpreting these patterns [7]. For this purpose, Convolutional Neural Networks

(CNNs) architectures offered the ability to learn hierarchical spatial representations from

visual data [12] since their ability to model spatial information is suited for recognizing

structural variations [13]. The systematic benchmarking and comparison of methods for

the detection of industrial structural anomalies is performed using a widely used MVTec

Anomaly Detection (MVTec AD) [6] [14, 15, 16], offering a diverse collection of indus-

trial objects and defect types. The approaches developed using the architectural char-

acteristics of CNNs reported state-of-the-art performance, frequently achieving scores

exceeding 99% [14, 17, 8]. The remarkable performance in structural anomaly detec-

tion can be largely attributed to the alignment between features of structural anomalies

and the inductive biases inherent in CNN-based architectures [18, 19]. The inductive

bias in CNNs stems due to their receptive fields, which focus on neighboring pixel re-

gions. This characteristic of CNNs helps to develop localized structural understanding

of objects in images. However, when accurate interpretation depends on relationships
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between spatially distant components, such as determining whether two separate objects

or components of objects are correctly assembled to reflect logical consistency, standard

CNN architectures encounter fundamental limitations. The inductive bias of the mod-

els caused by the receptive field prevented them from effectively capturing long-range

dependencies [12] which becomes a critical weakness when addressing logical anomaly

detection tasks [5, 20].

1.4 Initial Efforts in Logical Anomaly Detection

We explored several preliminary approaches to address the challenge of detecting both

structural and logical anomalies in industrial settings. These efforts focused on three

main directions: generative models (diffusion-based), object detection methods, and

transformer-based relational reasoning. Each strategy offered certain advantages, but

also revealed critical limitations that made them unsuitable for unified, unsupervised

anomaly detection.

1.4.1 Diffusion-Based Generative Models

DiffusionAD [21], a norm-guided one-step denoising framework, demonstrated strong per-

formance in reconstructing images corrupted with structural defects. Structural anoma-

lies often manifest as localized pixel-level deviations, which the model learns to correct

during reconstruction. Anomalies can then be detected by comparing the reconstructed

image with the input. However, this method was less effective for logical anomalies, which

involve violations of expected object configurations or relationships. For instance, a miss-

ing granola bar in an otherwise complete breakfast box may not produce a noticeable

difference in pixel values, leading to near-identical reconstructions and a failure to de-

tect the anomaly. Addressing such cases would require the introduction of an additional

diffusion-based module specifically trained to focus on identifying logical inconsistencies



Chapter 1. Introduction 7

by learning typical object arrangements or relational patterns. However, even such a

module would still lack the ability to explicitly count objects or verify set-level relation-

ships (e.g., one-to-one correspondence between slots and items). Capturing this level

of reasoning would necessitate yet another module dedicated to object counting or spa-

tial consistency enforcement. This layering of specialized modules would substantially

increase architectural complexity. Combined with the high computational demands of

diffusion-based models, these limitations render the approach unsuitable for scalable and

practical anomaly detection in industrial settings.

1.4.2 Object Detection based Models

Object detection models such as You Only Look Once (YOLO) [22] are effective for

identifying and localizing spatially distinct items, offering a potential route for detecting

logical anomalies that involve object duplication or omission. However, their utility di-

minishes at the component level, where objects may be densely packed, visually similar,

or lack clear boundaries. Additionally, logical anomalies frequently arise not from object

presence alone, but from violations of spatial arrangements or co-occurrence rules. For

example, two pushpins occupying the same slot, or components of a meal box arranged

incorrectly. Such relational inconsistencies fall outside the representational scope of typi-

cal object detectors. Furthermore, YOLO and similar models require supervised training

with bounding box annotations for each object class. This transforms the problem from

unsupervised anomaly detection to supervised localization, imposing a significant label-

ing burden and reducing adaptability in scenarios where the types of anomalies are not

known in advance.

1.4.3 Transformer-Based Relational Models

To address the need for global reasoning over object relationships, transformer-based

models like CounTR [23] were considered. Originally designed for crowd counting,
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Counting Transformer (CounTR) employs self-attention mechanisms to model spatial

dependencies and global context, making it a potential candidate for relational anomaly

detection. In theory, such models could learn typical configurations and flag violations

involving missing, repeated, or misaligned components.

However, transformers generally require extensive training data to learn reliable atten-

tion patterns and to generalize effectively. This requirement presents a major challenge in

industrial anomaly detection settings, where datasets are limited and logical inconsisten-

cies are often highly varied and unlabeled. Even with architectural flexibility, applying

transformer-based counting models would necessitate auxiliary modules for semantic ver-

ification or rule-based reasoning, adding further complexity to the pipeline since counting

alone does not guarantee semantic correctness.

1.4.4 Component Segmentation Anomaly Detection

A recent unsupervised Component Segmentation Anomaly Detection (CSAD) [24] frame-

work, has combined segmentation with Recognize Anything Model++ (RAM++) [25],

GroundingDINO [26] and Segment Anything Model (SAM) [27] to address both struc-

tural and logical anomaly detection. By Using RAM++, GroundingDINO and SAM to

generate pseudo-labels, CSAD constructs component-aware segmentations without su-

pervision, enabling explicit reasoning over component counts using the patch histogram

module. These modules directly capture logical inconsistencies arising from incorrect

quantities. In parallel, the global student network in CSAD’s Local-Global Student-

Teacher (LGST) module employs an CNN based autoencoder [28] that implicitly captures

image-wide dependencies. This integration of explicit (histogram-based) and implicit

(CNN based autoencoder) represents a meaningful step in logical anomaly detection.

However, a critical limitation persists. CSAD has not taken explicit advantage of self-

attention architectures [29, 30], which are inherently well suited to model arbitrary global

relationships between components of objects residing in different regions of an image.
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1.5 Attention Enhanced CSAD

Motivated by the limited receptive field of CNN based autoencoder that is represented

as global student network in CSAD, we implemented self-attention in global student

network and propose Attention Enhanced CSAD (AeCSAD). AeCSAD explicitly models

the relational structure among segmented components, enabling reason over object or

component level contextual dependencies. Unlike convolutional operations, which are

inherently local and translation-invariant, self-attention mechanisms treat every position

as a potential source of information, allowing for feature interactions that reflect rela-

tionships rather than just local appearance. Moreover, self-attention aligns well with the

notion of global context modeling, which lies at the heart of CSAD’s student-teacher

paradigm. Since the teacher network in CSAD defines the normal features, the student

must learn not just to replicate features, but to understand how features relate to one

another across space. The addition of self-attention enhances this relational sensitivity,

enabling the student to fail more meaningfully in the presence of global anomalies. This

self-attention based extension thus forms the principal architectural contribution of this

thesis. Figure 1.3 presents a high-level overview of AeCSAD.

Self Attention Blocks

Global 
Student

Segmentation Patch 
Histogram

CSAD
Attention Enhanced CSAD

Image Level 
Anomaly 

Score
Local StudentTeacher

Image

LGST Module

Figure 1.3: High-level overview of the proposed Attention Enhanced CSAD (AeCSAD)
framework extending CSAD (in blue). A normal image is processed by a teacher network
and compared with local and global student, where the global student incorporates self-
attention (green) to capture long-range dependencies. Semantic segmentation and patch-
wise histograms are used to compute the image-level anomaly score.
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1.6 Research Objectives

Across our intially explored effort, a consistent limitation emerged where structural

anomalies could be captured using local visual cues, while logical anomalies required

reasoning about object arrangements, roles, and relational consistency. The methods ei-

ther incurred high computational costs, relied heavily on supervised data, required large

amount of training data, or lacked explicit semantic modeling capabilities. Observing

these limitations, we aim to achieve the following objectives in our work.

1. To develop a unified, lightweight anomaly detection framework capable

of effectively handling both structural and logical anomalies in an unsupervised

setting.

2. To design a modular architecture where local and relational reasoning compo-

nents operate independently.

3. To ensure data efficiency by building a model that performs well with limited

training samples.

4. To bridge the gap between pixel-level and semantic-level understanding,

integrating both local detail sensitivity and global context modeling within a single

coherent framework.

1.7 Contributions

This work proposes Attention Enhanced CSAD (AeCSAD), an anomaly detection frame-

work that integrates self-attention into the global student network of CSAD. Self-attention

offers a mechanism for modeling global interactions between distant parts of an image,

allowing explicit logical reasoning. The primary contributions of this work are as follows.
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• We introduce AeCSAD, a self-attention enhanced anomaly detection framework

capable of identifying both logical and structural anomalies in a semi-supervised

setting.

• We restructure the global student student of CSAD [24] by incorporating self-

attention blocks, enabling explicit relational reasoning across distant regions of an

image.

• We provide empirical evidence showing that AeCSAD outperforms state-of-the-

art baselines across logical and structural anomalies on the MVTec LOCO AD [5]

benchmark.



Chapter 2

Literature Review

This chapter surveys the evolution of visual anomaly detection methods, beginning with

classical statistical techniques and progressing toward their adaptation into modern con-

volutional neural network (CNN) based frameworks. We then examine the transition

toward logic-aware approaches, driven by structural modifications and redefinition of

feature representations. The chapter concludes by presenting recent advances in dual-

branch student–teacher architectures, which serve as integrated solutions to address both

structural and logical anomalies. Through this review, we position our approach not

merely as a continuation of prior methods, but as a synthesis of statistical principles,

architectural innovations, and semantic-level reasoning.

With the review of the landscape of visual anomaly detection in the context of in-

dustrial manufacturing. Our objective is to trace how foundational methodologies, from

classical statistical modeling to modern deep learning architectures, have shaped the

field’s practices and informed the development of systems capable of detecting both

structural and logical anomalies. By analyzing model architectures, assumptions about

feature representations and normality modeling, and domain-specific adaptations in prior

work, we aim to clarify the methodological boundaries and practical trade-offs among

major categories of visual anomaly detection methods.

12
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2.0.1 Overview

As an overview of our literature, we begin discussing anomaly detection using statistical

frameworks that attempted to model the distribution of normal data in either raw pixel

space or a low-dimensional and transformed space called embedding. These methods,

ranging from principal component analysis [31] and Gaussian mixture models [32] to

Mahalanobis distance [33] and clustering [34], established a principle that is still a core

to anomaly detection today, namely that if one can accurately represent what is normal

then deviations from that representation can signal anomalies.

We then move our discussion to a pivotal shift occurred with the advent of deep Con-

volutional Neural Networks (CNNs), which enabled automatic extraction of hierarchical

visual features from raw input images. CNN-based methods improved anomaly localiza-

tion under variations in illumination, texture, and background clutter. These approaches

often maintain statistical roots by applying k-Nearest Neighbors [35] or Mahalanobis

distance [36, 37] over CNN feature maps. Others employ student–teacher consistency

frameworks, in which a learnable student model is trained to replicate a frozen teacher’s

representations on normal data, with deviations interpreted as anomalies.

We will also see early methods that were primarily designed for structural anomaly

detection. We will learn that, while such methods have demonstrated strong performance

for detecting structural anomalies, they fall short in handling logical anomalies. Instead,

they require reasoning over part relationships and context[5]. As a result, there has

been a growing research focus on models capable of integrating global dependencies,

compositional semantics, and relational structure.

We will shift our discussion towards an end, where we will learn about recent works

have extended structural anomalies focused frameworks to also focus on logical anomalies.

One direction modifies the student–teacher paradigm, introducing bottlenecks, memory

modules, or multi-branch architectures to learn local and global anomaly signals jointly

[38]. The other leverages segmentation-based logic modeling, employing unsupervised
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clustering or few-shot part segmentation to reason over object composition [39]. Such

methods often incorporate memory banks or statistical priors to track part distributions

and spatial relationships, enabling more principled reasoning about object logic.

2.1 Statistical Approaches

At the fundamental level, statistical methods aim to characterize the behavior of data

using probability theory. In the context of anomaly detection, this typically involves esti-

mating the probability distribution of “normal” data and assessing whether new samples

deviate from this distribution. Applied to visual domains, these methods must oper-

ate in high-dimensional spaces where raw images consist of numerous pixel values, and

the underlying patterns of normality can be highly complex. To address this, statistical

approaches rely on feature extraction to transform raw visual data into compact, infor-

mative representations that emphasize structural regularities. These features may range

from simple pixel intensities to more abstract embeddings derived from dimensionality

reduction techniques[40, 41, 42].

2.1.1 Statistical Assumptions for Anomaly Detection

At their core, statistical approaches are typically based on the following assumptions:

1. Normality is learnable from the data: That is, if provided enough examples of

normal behavior, a statistical model can learn the parameters or structure of this

behavior.

2. Anomalies deviate significantly: Anomalous samples lie far from the learned

model in terms of distance, density, or reconstruction error.

The assumptions then guide the statistical anomaly detection models to formulate nor-

mality in terms of data distributions, distances, variances, and correlations. The methods
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therefore, then model normality by representing the high-dimensional visual input in a

lower-dimensional manifold that maintains important correlations. After that, these

compressed representations form the basis for detecting and measure deviations. The

practical implementations of these assumptions vary widely. Some models define bound-

aries in feature space (e.g., One-Class SVM [43]), others estimate density (e.g., Gaussian

Mixture Models [32]), and still others measure how well new samples can be reconstructed

from normal data (e.g., PCA [31]). These statistical models offer different levels of utility

for these anomaly types:

• Structural Anomalies: Statistical methods like PCA can be highly effective here

because the anomalies manifest as measurable deviations in brightness, edge den-

sity, spatial structure, or texture regularity. In particular, metrics like Mahalanobis

distance or control charts can detect when these visual patterns deviate from ex-

pected norms.

• Logical Anomalies: Traditional methods can still be used here if the features

capture semantic information, such as object co-occurrence, shape consistency, or

spatial arrangement. For example, applying a One-Class SVM to high-level embed-

dings from a pretrained CNN can detect if a certain composition is highly unlikely,

even if each individual object appears normal.

2.1.2 Limitations of Statistical Approaches

Classical statistical approaches for anomaly detection faced notable limitations that con-

strained their scalability in real-world visual inspection tasks. The rigid nature of hand-

crafted feature definitions, the need for manual tuning of parameters, and the dependence

on domain-specific knowledge reduced their adaptability across varying visual domains.

Moreover, these models were particularly sensitive to common environmental variations

in industrial imaging such as lighting, noise, and reflection.This need catalyzed a method-
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ological shift toward deep learning-based approaches, particularly those grounded in Con-

volutional Neural Networks (CNNs)[44, 45].

2.1.3 Summary of Statistical Based Approaches

While structural anomalies can often be addressed through statistical analysis of raw or

low-level features, logical anomalies require feature representations that capture semantic

and relational dependencies capabilities that are often enabled by hybrid models. More-

over, statistical methods provide critical safeguards in deployment scenarios; when deep

models exhibit uncertainty or encounter out-of-distribution inputs, statistical detectors

serve as lightweight yet reliable anomaly indicators[46, 47, 48].

2.2 CNN-Based Statistical Modeling and Limitations

Convolutional Neural Networks (CNNs) [49] are architectures that can learn hierarchical

visual features from raw image data, thereby replacing hand-crafted representations with

adaptable feature hierarchies. These models retained many statistical intuitions such

as modeling distributions, quantifying deviations, or scoring reconstruction errors but

embedded them within a learned feature space. A common design paradigm in CNN

based anomaly detection is the unsupervised [50] setting, in which models are trained

exclusively on normal samples, and anomalies are identified at inference time based on

deviation from learned representations. Within this framework, several methods extract

convolutional features from pretrained backbones and model their distributions using

multivariate Gaussians. Anomaly scores are then computed using the Mahalanobis dis-

tance [51]. This strategy assumes that, under normal conditions, the distribution of deep

features is approximately Gaussian per location, and that significant deviations from this

distribution indicate anomalous content[6, 7, 4]. The upcoming subsections would review

methods such as SPADE [52], PaDiM [53], and RegAD [54] embodying this approach.
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2.2.1 SPADE

Semantic Pyramid Anomaly Detection (SPADE) [52] presents unsupervised visual anomaly

detection by reframing the task as a problem of correspondence and alignment failure.

Rather than modeling statistical distributions directly or learning reconstruction map-

pings, SPADE considers pixel level detail to detect anomalies by measuring how well a

test image can be matched to a set of normal training images. The architecture of SPADE

is entirely inference-based and relies on pretrained deep convolutional features, extracted

from a WideResNet-50 model trained on ImageNet dataset[55, 56] where SPADE utilizes

frozen features from different layers of WideResNet-50, capturing a hierarchy of informa-

tion. These features are assembled into a pyramid representation, which preserves both

high-resolution detail (via early layers) and abstract semantic information (via deeper

layers).

Once the pyramid features are extracted, SPADE performs two stages of anomaly

scoring. First, it computes an image-level anomaly score by measuring the distance

between the global representation of the test image and its k-nearest neighbors (kNN) [57]

from the training set to filter out globally consistent images. For localization, SPADE

compares each patch (or pixel-wise feature vector) in the test image to all patches in the

top-K nearest training images. It calculates the L2 distance [58] between a patch and its

closest match, then averages the distances across the pyramid to obtain a dense anomaly

map. Patches with high average distances are flagged as anomalous.

Statistically, SPADE embodies core ideas that bridge classical and deep anomaly de-

tection. It assumes that patches from normal images lie in dense regions of feature space,

while anomalies fall in sparse or isolated areas, similar to density estimation models.

However, it does not explicitly model the distribution of normal data. Instead, it im-

plicitly estimates the local feature density through kNN retrieval, which avoids imposing

strong parametric assumptions (such as Gaussianity). This design makes SPADE robust

to multimodal data and adaptable to various appearance patterns without retraining.
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SPADE only requires a gallery of normal images and a pretrained CNN backbone. This

simplicity makes SPADE efficient to deploy. Additionally, its use of multi-resolution fea-

tures allows it to detect subtle deviations across multiple spatial scales. However, SPADE

also presents certain limitations. Since it relies entirely on appearance similarity and spa-

tial alignment, it is primarily sensitive to anomalies that affect visual consistency such as

defects in texture, color, or structure [52] and it may underperform in detecting logical

anomalies[5, 59]. Moreover, the computational cost of comparing every test patch to a

large memory bank during inference can become substantial for large and high-resolution

datasets.

2.2.2 PaDiM

Patch Distribution Modeling (PaDIM) [16] also introduces a statistical formulation but

grounded in parametric modeling of local convolutional features. At its core, PaDiM

constructs per-patch statistical distribution by extracting hierarchical feature embeddings

from a pretrained ResNet [60] backbone. The method selects features from early, mid, and

last convolutional layers of ResNet and concatenates them to form spatial descriptors for

each patch. These descriptors encapsulate both low-level texture and high-level semantic

cues. This multi-layer fusion mirrors the representational goals of feature pyramids, but

PaDiM diverges from SPADE in its downstream use. Rather than retrieving neighbors,

PaDiM learns the distributional properties of normal patches.

In training, PaDiM estimates a separate multivariate Gaussian distribution for each

spatial location (i.e., patch position) across all training samples. Specifically, for ev-

ery fixed spatial index (i, j) in the feature map, the method computes a mean vector

µij and covariance matrix Σij, encapsulating the variability of feature embeddings at

that location under normal conditions. These parameters are stored and reused during

inference. At test time, anomaly scoring is performed by computing the Mahalanobis

distance [33] between the test patch’s embedding at location (i, j) and a correspond-
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ing Gaussian model. Notably, this scoring mechanism eliminates the need to store or

search over training embeddings during inference, yielding significant gains in memory

and speed.

PaDiM models anomalies as statistical outliers by learning the probability density

of each patch location in feature space, forming a probabilistic profile of normal visual

patterns. Unlike retrieval-based approaches that approximate density via sample prox-

imity, PaDiM’s generative modeling allows for analytic scoring which is efficient when

the feature distribution is unimodal and well-separated. Moreover, the Mahalanobis dis-

tance naturally incorporates both the mean and covariance structure, adapting sensitivity

based on learned variability i.e patches with stable appearance are penalized more heavily

for deviations, while those with high intra-class variance tolerate greater fluctuations.

However, PaDiM’s assumptions come with trade-offs. Its modeling assumes per-

location Gaussianity, which may be limiting in settings where feature distributions are

multimodal or spatially entangled. Additionally, its scoring remains appearance-centric

i.e it detects whether something ”looks unusual” at a given location, but not whether

the overall composition or object logic is violated.

2.2.3 RegAD

Registration-Based Few-Shot Anomaly Detection (RegAD) [54] introduces a registration-

based formulation for few-shot anomaly detection(FSAD) [61], designed to operate across

novel categories without retraining. The core of RegAD lies in the use of a Siamese

network [62] that learns to align features from image pairs of the same class. Each

branch of the Siamese network encodes the input image using a convolutional backbone

without global pooling, preserving fine-grained spatial resolution. To bring the feature

maps of the two inputs into correspondence, RegAD embeds Spatial Transformer Net-

works (STNs [63]) at multiple stages of the encoder. These modules learn geometric

transformations that maximize local similarity in the resulting feature space, effectively
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”registering” the query image to a support exemplar.

During training, the model is presented with only normal image pairs from a variety of

object categories. The registration process is optimized to align spatial features via cosine

similarity, allowing the model to learn category-agnostic structural correspondences. In

doing so, RegAD internalizes a general notion of spatial regularity that allows it to later

compare new test images to a small set of normal exemplars drawn from previously

unseen classes.

Once registration is performed, the anomaly detection phase begins. For a given test

image and its registered support set, RegAD computes per-location feature distributions

using the registered feature maps of the normal samples. At each spatial index, a mul-

tivariate Gaussian distribution is estimated over the registered support features. The

Mahalanobis distance [33] is then used to score how far each location in the test image

deviates from these local distributions. This produces a dense anomaly map that reflects

deviations from expected registered structure.

The distinction of RegAD from earlier methods such as PaDiM and SPADE is its

ability to generalize across categories. While SPADE uses retrieval from a fixed training

set and PaDiM learns distributions fixed to object categories, RegAD dynamically builds

feature distributions conditioned on a few support images. This few-shot paradigm re-

moves the need for a separate model per category and enables practical deployment in

industrial settings where labeled data is scarce.

Statistically, RegAD remains grounded in classical anomaly detection principles. Its

use of Mahalanobis distance and per-patch Gaussian modeling matches prior approaches.

RegAD excels in detecting spatial anomalies across diverse object types, especially when

appearance deviations are subtle but misaligned. However, it does not explicitly model

the logical composition of scenes. This is a consequence of RegAD’s design philosophy

where it enforces spatial alignment, but not semantic reasoning. A comparative summary

of key architecutural elements of methods discussed in this section is given in Table 2.1.
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2.3 Non-Parametric kNN-Based Feature Models

Another prominent family of industrial anomaly detection methods leverages deep fea-

tures from pretrained networks, applying non-parametric anomaly scoring via k-nearest

neighbor (kNN) algorithms. These approaches rely on distance based comparisons in

feature space representing a low-cost strategy for anomaly detection. Recent advances

have significantly diversified and enhanced this framework across four critical dimensions:

spatial awareness, feature refinement, training-data assumptions, and computational scal-

ability.

2.3.1 PatchCore

PatchCore [14] exemplifies a non-parametric, training-free approach to anomaly detection

built entirely on nearest-neighbor search over deep features extracted from pretrained

networks. Rather than fitting parametric models or learning reconstruction mappings,

PatchCore relies on the idea that anomalies can be detected by measuring distance to

previously observed normal examples. Specifically, it implements a patch-level kNN

retrieval strategy in deep feature space, optimized for both memory and computational

efficiency.

PatchCore begins by extracting intermediate convolutional feature maps from a pre-

trained WideResNet50 [55]. These feature maps are flattened into a set of patch-wise

embeddings, each corresponding to a localized spatial region of the input image that al-

lows the method to localize small or spatially concentrated anomalies. To reduce the size

of the reference memory bank without sacrificing coverage of the normal feature space,

PatchCore applies coreset subsampling via greedy k-center clustering. This ensures that

the retained features span the diversity of normal patches while enabling fast retrieval.

Anomaly detection is performed at inference time by comparing each patch in the test

image to its closest match in the memory bank using L2 distance. These patch-level
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scores are then aggregated to form image-level anomaly scores and spatial heatmaps.

PatchCore’s kNN-driven logic is built around the assumption that normal patches

form dense clusters in feature space, while anomalous patches will lie at greater distances.

However, its focus is not on explicitly modeling distributions or densities; rather, it uses

kNN purely as a distance-based decision rule. While PatchCore is effective at detecting

surface-level defects and irregular textures since its scoring is grounded in local visual

similarity rather than semantic context or logical relationships between parts. Moreover,

although the coreset improves inference speed, it introduces a sensitivity to the coverage

quality of the retained memory causing trade-off between memory size and detection

accuracy. Nevertheless, PatchCore demonstrates how pretrained CNN features, when

paired with simple non-parametric retrieval mechanisms, can yield robust performance

without the need for additional learning stages.

2.3.2 Position-aware Neighborhood Information

Position-aware Neighborhood Information(PNI) [64] introduces an enhancement to the

non-parametric, kNN-based anomaly detection paradigm by embedding spatial priors

into the inference process. Building upon the core logic of methods like PatchCore, PNI

extends this framework by recognizing that the likelihood of an anomaly is not determined

solely by visual similarity, but also by where and how features appear within the spatial

structure of an image. The model begins by extracting mid-level patch embeddings from

a pretrained convolutional backbone ResNet18 [60], with each embedding corresponding

to a spatial location in the image. These features are stored in a memory bank of normal

data, constructed in the same way as PatchCore. During inference, each test-time patch

is compared to the memory bank, and its nearest neighbor is retrieved based on L2

distance[58]. However, unlike standard kNN scoring, PNI does not treat all deviations

as equal. To refine this scoring mechanism, PNI introduces two contextual priors:

(1) Positional Priors: The likelihood of certain visual features varies across spatial
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positions. PNI learns a prior map over the training data that models the typical spatial

positions of patch types. At test time, the anomaly score is adjusted based on how

expected a patch’s location is relative to this learned prior.

(2) Neighborhood Consistency Priors: Local regions in normal images tend to

exhibit spatially coherent features. To encode this, PNI measures the similarity of a patch

not just to its own nearest neighbor, but in the context of its surrounding neighbors. If a

patch’s anomaly score diverges significantly from its neighborhood, it may be suppressed

or amplified accordingly. This local smoothing enhances structural consistency in the

anomaly heatmaps and reduces false positives from isolated outliers.

Through its priors, PNI introduces rudimentary awareness of capturing structure

of object structure—capturing. However, the model still operates within a fundamen-

tally appearance-driven framework. It improves spatial sensitivity, but does not reason

over logical composition. PNI thus offers a bridge between basic retrieval-based scoring

and richer spatial understanding, but stops short of true logic-aware anomaly detection.

Nonetheless, PNI’s contribution shows that incorporation of reasoning about context into

scoring using heuristics can elevate the expressiveness of kNN detection without intro-

ducing full model retraining. These ideas extend the design space of non-parametric

methods toward structured understanding, and lay conceptual groundwork for hybrid

approaches that combine local matching with global reasoning.

2.3.3 Feature-Space Refinement in kNN-Based Method

ReConPatch [65] addresses a key limitation in non-parametric kNN-based anomaly de-

tection, which is the reliance on raw pretrained features from networks trained for object

classification (e.g., ImageNet). While these features are effective at capturing general vi-

sual patterns, they are not optimized for detecting subtle structural deviations or contex-

tual inconsistencies commonly encountered in industrial anomaly detection. ReConPatch

proposes a solution that neither discards the efficiency of the kNN pipeline nor retrains
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the backbone. Instead, it introduces a lightweight contrastive learning [66] module to

reshape the feature space, making it more sensitive to anomaly-relevant distinctions. The

architecture follows the conventional kNN-based detection framework adopted by PNI

and PatchCore.

However, ReConPatch introduces a critical modification in the form of a projection

head trained using a patch-wise contrastive loss [67]. This head is shallow (typically

one or two fully connected layers) and is trained to cluster visually and semantically

similar patches, extracted often from nearby spatial regions or data augmentations and

repelling dissimilar patches. The training is performed only on normal data and is self-

supervised [68], requiring no anomaly labels. Crucially, it does not involve fine-tuning

the backbone, preserving the lightweight, inference-focused nature of the overall system.

This contrastive objective reshapes the geometry of the embedding space. It ensures that

feature similarity reflects more meaningful local and contextual relationships, allowing

the kNN scoring mechanism to better distinguish between subtle variations of normal

and abnormal patterns.

As a result, ReConPatch significantly improves anomaly localization accuracy, espe-

cially in scenarios where raw pretrained features produce misleading neighbor matches

due to texture or shape confusion. Yet, ReConPatch, like its predecessors, operates

within the visual similarity paradigm. Its scoring also remains grounded in appearance-

based deviation and does not explicitly model object composition, spatial configuration,

or logical structure. Nevertheless, ReConPatch success reinforces the idea that repre-

sentational quality and not just architecture plays a critical role in anomaly detection

performance, even in training-free or few-shot regimes.

2.3.4 Unsupervised kNN Filtering of Channels

Inter-Realization Channels (InReaCh) [69] is a fully unsupervised anomaly detection

framework that adapts the kNN-based detection paradigm to operate effectively even in
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the presence of substantial noise or contamination in the training set. Unlike previous

kNN methods that assume anomaly-free training data, InReaCh offers a mechanism to

filter and retain only highly confident nominal features before constructing the memory

bank for test-time comparison. By focusing on robust feature realizations across mul-

tiple augmentations, InReaCh enhances reliability and reduces the impact of corrupted

training data.

Each image is treated as a separate realization of a shared underlying data distribu-

tion. From this perspective, nominal patches should associate reliably across multiple

images. To operationalize this, InReaCh introduces inter-realization channels that con-

sists of sequences of spatially aligned and mutually nearest patches, constructed by com-

paring seed patches from a subset of images against patches from the remaining dataset.

Only those channels that show both high span (i.e., presence across many images) and

low spread (i.e., internal similarity) are retained as representations of nominal behavior.

The final nominal memory bank model is built from these filtered channels. At test time,

anomaly scores are assigned by computing the L2 distance [58] between each test patch

and its nearest neighbor in this memory. Crucially, this step remains non-parametric and

does not involve any training or parameter fitting.

InReaCh is notably resilient to noisy training data, using a span-and-spread trimming

strategy to exclude anomalies even when up to 40% of the training set is corrupted.

This design choice alleviates a major bottleneck of earlier approaches like PatchCore,

which may inadvertently retain outlier patches during coreset subsampling. In contrast,

InReaCh sacrifices some recall for high precision in modeling nominality, ensuring that

the anomaly scoring remains grounded in consistently repeating, high-confidence visual

patterns. However, InReaCh inherits the same limitation as PatchCore and PNI in terms

of detecting logical inconsistencies as its deign focus was on resilience to noise and not

relational and compositional design. A summarized comapartive analysis of this section

is also given in Table 2.2.
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2.4 Student-Teacher Methods in Anomaly Detection

Student-teacher (ST) paradigm [70] introduce a predictive learning setup, where a stu-

dent network is trained to imitate a fixed teacher’s feature representation on anomaly-free

data. The underlying assumption is intuitive where the student encounters anomalous

content at test time, it will fail to replicate the teacher’s features, leading to detectable

divergence. This setup blends transfer learning [71], self-supervised [72] regression, and

out-of-distribution generalization into a unified framework which we will discuss in sec-

tion.

2.4.1 Uninformed Students

The Uninformed Students [70] model formalizes a foundational hypothesis that when a

student model is trained exclusively on normal data to replicate the output of a fixed

teacher network, its response to anomalous inputs will exhibit measurable deviations.

These deviations, quantified as reconstruction errors in the feature space, form the basis

for anomaly scoring. The method employs a pretrained teacher network, typically a

ResNet [60] or WideResNet [55], to extract multiscale feature representations from the

input image. The teacher is not fine-tuned on the anomaly detection dataset and instead

provides frozen, general-purpose semantic embeddings. One or more student networks are

then trained in a regression setting [73] to reproduce the teacher’s intermediate feature

maps. Training is performed on anomaly-free data using a mean squared error (MSE)

loss [74] function, with the objective of minimizing the discrepancy between the student

and teacher features at corresponding spatial locations.

A distinguishing feature of this framework is the use of a student ensemble to estimate

predictive variance [75]. Rather than relying on a single deterministic prediction, the

approach trains multiple students independently and computes both the mean feature

reconstruction error and the variance across student outputs. During inference, the
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combined error and variance are aggregated into a dense anomaly map, highlighting

spatial regions likely to contain defects[76, 77, 75, 78]. The Uninformed Students model

was designed to balance semantic abstraction and localization fidelity. The feature maps

are are incorporated from different depths of the teacher network, capturing both fine-

grained texture anomalies and broader structural inconsistencies. This multi-scale feature

regression enhances the model’s capacity to detect diverse anomaly types without relying

on pixel-level supervision or handcrafted features. Importantly, the method does not

require labeled anomalies or segmentation masks, making it highly suitable for industrial

settings where annotated data are scarce.

2.4.2 Reverse Distillation and Embedding Bottlenecks

While Uninformed Students [70] framed anomaly detection as a feature prediction task

using homogeneous encoder-based student-teacher networks, the Reverse Distillation

strategy [79] proposed a structural rethinking. This approach introduces architectural

heterogeneity and a reversed flow of information between teacher and student, aiming to

increase the representation of anomalous regions by breaking architectural and functional

symmetry. [70].

Conventional ST methods Students [70] often employ similar network structures and

share the same data input pipeline for both teacher and student. This results in overlap-

ping inductive biases and insufficient variance in response to anomalies. In contrast,

Reverse Distillation addresses this by pairing a frozen encoder-based teacher with a

decoder-based student, and by reversing the information flow. Rather than passing raw

input to both networks, the teacher first extracts high-level feature embeddings which

are then compressed into a low-dimensional one-class bottleneck embedding (OCBE).

The student decoder receives this compact representation and attempts to recon-

struct the teacher’s features. This architectural asymmetry serves multiple purposes.

First, it introduces filter diversity, eliminating redundancy due to similar receptive field
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activations between teacher and student. Second, the low-dimensional OCBE acts as a

semantic bottleneck that encourages the student to retain only anomaly-free patterns, as

anomalous activations are treated as perturbations and filtered out during embedding.

Third, the student’s reconstruction target spans multiple feature layers from the teacher,

enabling the detection of both local and global anomalies.

The anomaly score is computed by evaluating the cosine similarity [80] between the

teacher’s and student’s multiscale features. Cosine similarity measures the angle be-

tween two vectors, indicating how aligned their directions are, regardless of their mag-

nitude. Both, the memory efficiency and inference speed was improved, as only the

compact embeddings and decoder weights require storage. In addition, the integration

of multi-scale feature fusion (MFF), which aggregates semantic information from differ-

ent network depths to enhance spatial and contextual representation, and the one-class

embedding (OCE) module, which constrains feature learning to focus exclusively on nor-

mal class characteristics by projecting them into a compact, discriminative embedding

space, further enhances the model’s ability to isolate and distinguish normal patterns

from anomalies.

However, the ability of Reverse Distillation in handling logical anomalies remains lim-

ited. The student is trained to reconstruct multiscale features from a low-dimensional

one-class embedding (OCBE), which filters out anomalies through semantic compression.

This approach effectively suppresses visual outliers and improves localization structure-

level irregularities. However, the model’s decision process remains grounded in fidelity of

low-dimensional features reconstruction, without modeling relationships between object

parts or enforcing semantic consistency across spatial regions. As such, Reverse Distilla-

tion underperformed in scenarios where anomalies are defined by relational inconsistency,

such as parts being semantically valid but positioned in implausible arrangements. These

limitations suggest Reverse Distillation does not explicitly account for the structured rea-

soning that is required to detect logical anomalies [81, 82].
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2.4.3 Memory-Guided Distillation and Normality Forgetting

Building upon the architectural asymmetry introduced in Reverse Distillation, Memory-

Guided Knowledge Distillation (MemKD) [83] addresses the limitation normality forget-

ting, which refers to the student’s tendency to lose fidelity to normal feature patterns

over time. It introduces an adaptive memory mechanism that explicitly preserves and

reinforces the representation of previously encountered normal patterns. Instead of rely-

ing solely on instantaneous reconstruction loss [80], it incorporates stored feature priors

to stabilize the student’s feature responses over time. The memory module is integrated

with the reconstruction objective, enabling the model to more effectively differentiate

transient noise from consistent anomaly signals.

MemKD further acknowledges that student networks may either overfit to normal-

ity, leading to reduced sensitivity to true anomalies or become overly reactive to benign

variations. To address this, the model employs a normality recall (NR) memory module

that recalibrates the student’s intermediate representations based on previously stored

high-fidelity features from normal data. This is implemented using a key-value mem-

ory structure, where key entries assign relevance weights for retrieval, and value entries

store prototypical normal features that are fused with current student representations to

reinforce normality alignment.

In contrast to earlier methods such as Reverse Distillation [13], MemKD maintains

a traditional encoder-encoder ST pairing but integrates a memory-mediated feedback

loop. This augmentation allows the student to adaptively align its features with stored

nominal references at each stage of inference. A second core component is the normality

embedding learning (NEL) strategy. During training, a set of exemplar images is used

to construct a normality embedding bank from the teacher network, which guides the

memory module to generalize nominal patterns. This refinement evolves the student-

teacher paradigm from passive reconstruction based discrepancy detection toward a more

proactive modulation of the student’s latent space using long-term normality priors.
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Although MemKD enhances feature-level robustness by recalibrating the student’s

representations with recalled normal priors, its efficacy for logical anomaly detection

presents both strengths and caveats. By embedding high-fidelity normal patterns into

the student’s feature space, the model gains increased resilience against noise and benign

variations that typically mislead standard reconstruction-based detectors. However, the

method’s reliance on memorized exemplars may limit its flexibility when faced with

logical anomalies that involve relational violations or unseen spatial configurations. Since

the recall mechanism reinforces consistency with previously learned features, anomalies

that manifest as novel part-to-part dependencies or semantic dislocations may not be

fully captured. Thus, while MemKD offers strong generalization in representing known

normality, its structural bias toward memorized appearances could underrepresent the

anomaly space associated with higher-order logical inconsistencies [84, 85].

2.4.4 Projection-Based Suppression of Anomalous Signals

Reverse Distillation++ [86] revisits the reverse distillation (RD) framework and intro-

duces an enhanced variant that addresses key limitations in previous student–teacher

architectures. RD++ identifies and corrects two critical shortcomings in RD that in-

cludes the insufficient suppression of anomalous signals during training and the absence

of explicit compactness constraints in the student’s projected feature space. These limi-

tations reduced anomaly localization precision and compromised feature reconstruction.

The RD++ architecture retains the reverse flow principle of RD but introduces

lightweight projection layers after each intermediate block of the teacher network. These

layers map teacher features into compact representations before passing them to the one-

class bottleneck embedding (OCBE) module and eventually the student. To improve

anomaly suppression, the training process incorporates pseudo-anomalous signals gener-

ated by simplex noise injection, which is a biologically plausible perturbation model that

simulates realistic deviations from nominal distributions.
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The optimization objective is formulated as a multi-task learning loss. It combines

four components: (i) the standard cosine distillation loss between teacher and student;

(ii) a self-supervised optimal transport loss (SSOT) to encourage compactness among

projected normal features; (iii) a reconstruction loss ensuring the student can recover

normal structure from noisy pseudo-anomalies; and (iv) a contrastive loss that maximizes

the margin between normal and perturbed feature embeddings. Together, these terms

guide the student to form a tightly clustered and robust representation of normality.

Despite its improved capacity to suppress anomalous signals and enforce compact fea-

ture representations, RD++ remains fundamentally limited in its ability to handle logical

anomalies. The projection-based suppression mechanism is highly effective in eliminat-

ing low-level reconstruction noise and enhancing spatial precision in detecting structural

deviations. However, its detection logic is grounded in localized feature discrepancy,

without modeling higher-order semantic relationships or contextual dependencies among

parts. As a result, RD++ may fail to recognize anomalies that involve plausible visual

elements in scenarios where anomaly cues emerge from violations of spatial logic, or rela-

tional consistency—factors that fall outside the inductive scope of feature wise similarity

metrics. [81, 82].

2.4.5 Aligning Global and Local Context Using Multi-Heads

The GAP framework [87] introduces a dual-branch architecture that enhances anomaly

localization by integrating both global and local contextual information. Unlike conven-

tional student–teacher approaches that rely primarily on reconstruction or regression in

feature space, GAP adopts a discriminative matching strategy. Anomaly detection is

performed by comparing the features of each image patch against those of its surround-

ing spatial context, allowing the model to identify inconsistencies in relational structure.

This design addresses a key limitation of patch-level models, which often fail to detect

relational anomalies.
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The model used two parallel subnetworks consisting of a Local-Net that embeds the

selected patch and a Global-Net that infers the surrounding region via masked convolu-

tions to avoid information leakage. To evaluate consistency between these two representa-

tions, the authors introduce a dual-head detection module, composed of an Inconsistency

Anomaly Detection (IAD) head and a Distortion Anomaly Detection (DAD) head. The

IAD head captures semantic inconsistency between the patch and its neighborhood, while

the DAD head detects subtle structural distortions within the patch itself. The two out-

puts are combined through a learnable fusion mechanism to produce the final anomaly

score.

GAP does not explicitly rely on a teacher-student regression loss or a distillation ob-

jective; instead, it operates as a self-supervised relational matcher, making use of partial

convolutions, negative patch synthesis, and multi-head contrastive learning. The training

involves cross-entropy and contrastive losses to discriminate normal patches from per-

turbed or spatially inconsistent ones. Unlike memory-based methods, this architecture

is compact and efficient, requiring no feature banks or dense storage. GAP represents an

important conceptual link between ST-based feature regression and logic-aware anomaly

segmentation. Its dual-head modeling of spatial coherence and structural integrity di-

rectly motivates designs such as CSAD’s local-global dual student framework, which

similarly decomposes anomaly cues into region-specific and context-driven components.

GAP is designed to identify mismatches between a patch and its surrounding visual

context, thereby improving detection of misplaced but visually plausible regions. This

offers an advantage over traditional patch-based detectors, which often miss such rela-

tional cues. However, the framework does not incorporate explicit modeling of object

dependencies, symbolic rules, or scene-level logic. As such, GAP’s capacity for logical

anomaly detection is confined to local-global spatial misalignments, without extending

to abstract or relational violations that require structured reasoning [88, 89]. An archi-

tectural Summary of Student–Teacher Based Methods is given in Table 2.3
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2.5 Logical AD Methods

The emergence of logical anomaly detection (LAD) represents a evolution in the visual

anomaly detection literature, aimed at identifying failures through violations of object-

level structure, semantics, and relational integrity. In recent years, several works have

proposed fundamentally different mechanisms to model such logical constraints, leading

to a fragmented landscape of LAD architectures with varying degrees of semantic fidelity,

supervision requirements, and computational cost. In this section, we explore methods

that represent strategies for embedding logical constraints into the anomaly detection

pipeline.

2.5.1 Component-Aware Anomaly Detection

Component-aware Anomaly Detection (ComAD) [59] introduces a logic-centric frame-

work that leverages unsupervised segmentation and statistical reasoning to detect anoma-

lies arising from component-level violation. Unlike prior methods that rely on appearance-

based scoring over patches or features, ComAD conceptualizes an image as a composite

of semantic components, each of which may carry distinct logical roles.

To model this, ComAD constructs a pipeline that begins with unsupervised object-

part segmentation using features from a pretrained DINO-ViT backbone [90]. These

features are clustered via KMeans [91], with resulting segments refined using Conditional

Random Fields (CRFs) [92] to enhance spatial coherence and eliminate noise. This

segmentation process yields a set of pseudo-part regions, treated as proxy components of

the object. From this point, ComAD departs from standard anomaly detection practices

by computing metrological statistics over these components, including their area, color

histogram, centroid location, and frequency across training samples. Anomalies are then

detected by measuring deviations from this learned distribution using k-Nearest Neighbor

(kNN) searches and outlier scoring in the derived component feature space. Notably, the
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method does not assume access to part-level ground truth or pixel-wise annotations,

enabling it to remain label-free while still modeling logical structure. It also avoids

the need for part segmentation masks or object detection heads, relying entirely on the

emergent properties of self-supervised ViT features [90].

A core contribution of ComAD is its introduction of adjustable anomaly importance,

allowing users to assign semantic weights to components depending on their functional

importance. This is critical in industrial applications where certain parts (e.g., safety-

critical connectors) demand higher scrutiny than cosmetic ones. Furthermore, ComAD

offers high interpretability by generating anomaly maps that are traceable to individ-

ual pseudo-components, making inspection outcomes both explainable and actionable.

However, several trade-offs are present. First, the model’s effectiveness is tightly coupled

to the quality of unsupervised segmentation, which may vary significantly across do-

mains. In cluttered scenes or deformable objects, pseudo-components may be spatially

fragmented or inconsistently clustered. Second, ComAD relies on aggregated component-

level statistics, and while this captures part-based deviations, it may lack relational ex-

pressiveness i.e., it does not model part-to-part dependencies or geometric constraints

directly. Moreover, the pipeline introduces computational overhead during segmentation

and statistical analysis, especially in high-resolution settings.

2.5.2 Part Segmentation-Based Anomaly Detection

Part Segmentation-based Anomaly Detection (PSAD) [93] advances logical anomaly de-

tection by explicitly modeling the compositional structure of industrial products through

part-level semantic segmentation. Unlike ComAD, which relies on unsupervised compo-

nent clustering, PSAD introduces a few-shot supervised segmentation strategy [94, 95]

to generate high-fidelity component maps using only a limited number of labeled images.

This segmentation step enables the system to reason about logical constraints within an

image in a way that is consistent with manufacturer-defined logic.
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At the core of PSAD is a segmentation pipeline jointly trained on visual and positional

features, supervised by cross-entropy and Dice losses [96, 97] on labeled samples, and

regularized with entropy and histogram-matching losses [98, 99] on unlabeled data. These

losses ensure consistency in segmenting components across similar samples, even when

labeled data is scarce. The segmentation output is then used to construct three memory

banks, each capturing a different dimension of logic-aware representation: (1) a class

histogram memory to model expected part distributions, (2) a component composition

memory to encode typical inter-part relationships, and (3) a patch-level feature memory

to capture fine-grained local texture details. During inference, anomaly scores from each

memory bank are computed via nearest-neighbor searches, then adaptively normalized

using statistics from the training set to enable multi-source score fusion. This adaptive

scaling ensures robustness to differences in score distributions and prevents the dominance

of any single memory bank. Notably, PSAD demonstrates that segmentation-aware logic

reasoning is not only effective for logical anomalies but also improves structural anomaly

detection—achieving state-of-the-art AUROC on both LA and SA categories in MVTec

LOCO AD.

One of PSAD’s primary innovations lies in its balance between supervision and gener-

alization, as it uses only five labeled images per product type to drastically reduce anno-

tation overhead while outperforming prior unsupervised LAD models. It also addresses

key weaknesses in unsupervised segmentation-based LAD methods (e.g., ComAD), which

suffer from ambiguous part boundaries and weak consistency. However, PSAD’s reliance

on segmentation labels—even in small quantities may still limit its scalability to unseen

classes or diverse real-world deployments. The method also inherits the computational

costs of dense segmentation and multi-memory inference. In the broader LAD land-

scape, PSAD establishes a principled pipeline that formalizes logic modeling through

segmentation priors. While it is the most label-efficient segmentation-driven model to

date, it contrasts with CSAD, which eliminates segmentation entirely by distilling logical
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structure directly through dual-branch student-teacher training. This divergence high-

lights CSAD’s contribution: the first LAD model to embed logical consistency within the

training dynamics rather than as a separate component recognition step.

2.5.3 Logic-Aware Detection at Industrial Speeds

EfficientAD [8] proposes a novel direction in logic-aware anomaly detection by combin-

ing the conceptual richness of student–teacher frameworks with autoencoder-driven logic

modeling, all under an aggressively optimized computational budget. Unlike PSAD and

ComAD, which emphasize explicit segmentation or logic priors, EfficientAD operates

without segmentation supervision, delivering high logical anomaly detection accuracy at

millisecond-scale latencies. This is achieved through a synergy of architectural simplifi-

cation, selective feature learning, and strategic fusion of anomaly maps.

At its core, EfficientAD introduces a lightweight Patch Description Network (PDN) [8]

for both teacher and student, distilled from WideResNet-101 [55], yet capable of gener-

ating patch-level descriptors in less than 1 ms. This enables the system to produce a

dense feature grid at a throughput exceeding 600 images per second. The student model

is trained to mimic the teacher on normal images but is constrained using a hard feature

loss and pretraining penalties to avoid overfitting. These losses focus the student on

harder-to-learn regions and suppress its tendency to generalize outside the normal data

manifold.

To bridge the gap between spatially local and globally structured anomalies, Effi-

cientAD augments the student-teacher setup with an autoencoder that attempts to re-

construct the teacher’s feature space. Logical anomalies—such as misplaced components

or extra parts—cause the autoencoder to fail, especially in terms of feature fidelity. A

second student head is then trained to predict the autoencoder’s reconstruction. Discrep-

ancies between the autoencoder and this predictive head form the global anomaly map,

capturing logic-level violations (e.g., wrong arrangement or missing elements), while the
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traditional student-teacher difference provides local anomaly maps for structural issues.

A key design contribution is the calibrated fusion of these anomaly maps. By computing

quantile-based normalization [100, 101] on validation data, EfficientAD ensures that both

maps contribute meaningfully to the final anomaly score. This enables it to avoid the

common trade-off between logic accuracy and localization sharpness.

However, EfficientAD’s global logic modeling remains approximate: it does not use

component-level representations or segmentation masks, which limits its ability to ex-

plain what is wrong in a human-readable way. Additionally, although it avoids part

supervision, it does require training time to converge the joint autoencoder–student loss,

unlike inference-only approaches. Compared to PSAD or ComAD, EfficientAD pro-

vides a speed-accuracy compromise, targeting fast, deployable inspection pipelines with

robust logic reasoning, albeit with reduced interpretability. In relation to CSAD, Ef-

ficientAD’s two-headed architecture and implicit logic modeling serve as a conceptual

precursor. CSAD, however, builds upon this by embedding logical structure directly into

the dual-branch distillation process (LGST), removing the need for auxiliary decoders

and improving alignment between visual and logical anomalies at training time. Table 2.4

provides key comparison of logical anomaly detection methods that are discussed.

2.6 Summary of Literature Review Discussion

Having systematically reviewed the existing literature, it becomes evident that each

class of methods was introduced to address specific limitations observed in preceding

approaches. This progression reflects a gradual shift in the operational definition of

anomalies, moving from low-level structural deviations to high-level logical inconsisten-

cies. The following synthesis summarizes how these methodological advances unfolded

and how the resulting insights have informed the design decisions in our proposed AeC-

SAD method.
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From Mahalanobis to kNN-Based Methods Mahalanobis-based approaches form

an early class of methods for visual anomaly detection, where deep features extracted

from convolutional networks are modeled as samples from multivariate Gaussian dis-

tributions. These methods rely on global covariance estimation and assume unimodal

feature distributions, which limits their ability to capture spatially localized anomalies

or variations across object categories. To overcome these limitations, non-parametric

distance-based approaches, particularly k-Nearest Neighbor (kNN) scoring in deep em-

bedding space, were introduced. Unlike Mahalanobis models that impose global para-

metric assumptions, kNN-based methods operate directly on exemplar sets and preserve

local neighborhood structures, making them well-suited for detecting localized or irreg-

ular defects. This transition marked a shift toward retrieval-based detection paradigms

that offered improved robustness to structural variability and category-level diversity.

From kNN-Based Methods to Student–Teacher Frameworks Although kNN-

based methods effectively preserve local feature structure and avoid strong distributional

assumptions, these methods introduced increased memory requirements, reduced scala-

bility, and limited context awareness along with the lack of an explicit training objective

to model normality. These methods operate purely during inference and do not capture

how anomalous patterns diverge from normal representations during training. To address

this limitation, student–teacher frameworks were introduced. In this formulation, a stu-

dent network is trained to replicate features generated by a fixed teacher network using

only normal data, and anomalies are detected as deviations in the student’s predicted

representations. This approach introduces two key contributions to anomaly detection:

first, it enables learning-based feature consistency as a supervisory signal, and second, it

allows the integration of architectural inductive biases, such as projection layers, memory

components, or asymmetry between teacher and student networks, which can enhance

sensitivity to semantic or logically inconsistent patterns.
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From Student–Teacher Models to Logical Anomaly Detection Although stu-

dent–teacher frameworks introduced learning-based representations and enabled partial

semantic abstraction, they remained largely limited to detecting structural anomalies

such as texture defects, surface inconsistencies, and local geometric disruptions. As the

field expanded to applications requiring higher-level reasoning, such as object assem-

bly validation, part completeness checking, and semantic configuration verification, it

became necessary to address logical inconsistencies that go beyond local structural de-

viations. Logical Anomaly Detection methods were proposed to meet this requirement

by modeling compositional structure, spatial dependencies among parts, and object-level

functionality. The discussed approaches were broadly categorized into three directions:

(1) unsupervised logic-based reasoning using statistical constraints, (2) few-shot seman-

tic part segmentation to capture part–whole relationships, and (3) efficient, part-agnostic

logic approximation techniques. Each of these strategies offered a different trade-off in

terms of supervision level, interpretability, and computational efficiency.

2.6.1 Literature-Inspired Contribution in AeCSAD

Despite these methodological advances, most prior approaches including statistical mod-

els, retrieval-based techniques, and logic-aware frameworks share a fundamental limita-

tion. They rely primarily on localized feature representations and lack explicit mecha-

nisms to model long-range dependencies or global semantic relationships across the image.

In contrast, self-attention mechanisms, particularly those employed in Transformer-based

architectures, provide a principled means of encoding multi-scale contextual relationships.

When integrated into anomaly detection frameworks, self-attention enhances the model’s

ability to reason not only about local inconsistencies but also about global coherence and

inter-part dependencies. Based on these observations, we incorporate a self-attention

block into the global student network within the CSAD architecture.
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Chapter 3

Technical Preliminaries

This chapter provides the conceptual background of AeCSAD framework based upon

CSAD [24] modules that are necessary to understand the design choices and architec-

tural elements that serve as key foundations for our proposed AeCSAD framework. We

begin by introducing the usage of Recognize Anything Model (RAM++) [25] and move

to the discussion of the Segment Anything Model (SAM) [27] and GroundingDINO [26],

the two open-world segmentation frameworks that enable region proposal and compo-

nent segmentation through visual and prompt-based mechanisms. We then describe the

pseudo-labeling and Patch Histogram [39] strategy used for compositional reasoning, fol-

lowed by a discussion of Local–Global Student–Teacher (LGST) learning module wherein

we have made our contribution in this thesis.

3.1 Recognize Anything Model++

Recognize Anything Model++ (RAM++) [25] is an image tagging model trained for

open-set scenarios where object categories are not fixed or known in advance. Given

an image, RAM++ outputs a diverse set of tags that include possible object names,

contextual nouns, and background-related words. RAM++ is applied to a single normal

training image to facilitate the generation of candidate list of tags that serve as open-

45
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vocabulary descriptors of the visible components in the scene.

Table 3.1: Examples of auto-generated tags from RAM++ [25] and the filtered tags
retained for semantic reasoning in selected MVTec LOCO AD [5] categories. Adapted
from [24].

LOCO Category Auto-generated Tags via

RAM++

Semantic Tags Used for

Segmentation

Breakfast Box almond, banana, cereal, granola,

tray, food, container, fill, nut,

oatmeal

almond, banana, cereal, nut,

oatmeal, tray

Juice Bottle apple juice, lemonade, bottle,

jug, glass jar, milk, syrup, honey,

orange juice, sauce

apple juice, lemonade, bottle,

jug, glass jar, milk, syrup,

honey

Splicing

Connectors

cable, plug, socket, wire, electric

outlet, pole, connector, attach,

connect

cable, plug, socket, wire,

connector

One of the key challenges in utilizing open-set models like RAM++ for component-

level analysis lies in the noisy and heterogeneous nature of the tags they generate. These

tags often include abstract terms, verbs, or irrelevant contextual elements that are un-

suitable for structured reasoning. To address this, CSAD introduces a filtering step [24]

that retains only semantically meaningful object-level nouns. Table 3.1 provides illustra-

tive examples of RAM++ generated tags and their manually filtered counterparts across

several categories from the MVTec LOCO AD [5] dataset. As shown, filtering eliminates

non-object terms such as packaging elements or actions, resulting in a more focused tag
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set that aligns with the goals of compositional reasoning.

3.2 Segmentation using SAM and GroundingDINO

The Segment Anything Model (SAM) [27] is a general-purpose image segmentation that

is trained on a large-scale dataset comprising over one billion masks from millions of

images. SAM exhibits strong generalization capabilities across diverse visual domains

without requiring retraining or task-specific fine-tuning. A key characteristic of SAM

is its promptable segmentation behavior, in which the model responds to simple user-

provided prompts such as points or bounding boxes, and generates segmentation masks

around the indicated regions without relying on fixed category labels. This design allows

it to isolate object-like areas, making it effective in environments where explicit semantic

annotations are unavailable.

SAM operates in a zero-shot setting, where no examples of the target classes are

seen during training, which allows it to handle novel object types that it has not ex-

plicitly encountered before. Moreover, it is class-agnostic by design, meaning it focuses

on segmenting coherent regions without needing to understand or predict their semantic

categories [102, 103]. While SAM provides strong capabilities for spatial segmentation

through visual prompts, it lacks the ability to distinguish or locate components based on

semantic descriptions alone [104, 105]. To overcome this limitation, CSAD incorporates

both SAM and GroundingDINO [26], leveraging their complementary strengths where

SAM is used for visual region proposals, while GroundingDINO enables text-conditioned

component identification.

GroundingDINO is a vision-language model designed for open-set object detection,

enabling it to detect and localize objects in an image based on free-form text prompts.

Unlike traditional closed-set detectors that require predefined object categories, Ground-

ingDINO can respond to arbitrary descriptions, making it suitable for scenarios where
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object types are undefined or vary widely across settings. Its strength lies in aligning

visual content with natural language through training on large-scale datasets that pair

regions with textual annotations. This alignment enables the model to semantically in-

terpret image regions and locate relevant objects. In combination with SAM, Grounding

DINO can guide segmentation using language prompts, producing bounding boxes for de-

scribed objects. This fusion enables the segmentation of semantically meaningful objects

or their components based on language input.

3.2.1 Limitations of SAM and GroundingDINO

Segment Anything Model (SAM) and GroundingDINO are trained on large-scale datasets

featuring naturalistic imagery and broad semantic categories, enabling them to generalize

across diverse visual domains [106, 26]. However, the architectural design and training

objectives of these models are not well aligned with the specific requirements of logical

anomaly detection in industrial settings [107].

SAM generates segmentation masks in response to spatial prompts, including points

and bounding boxes, and is inherently class-agnostic. While this design supports gener-

alization across object types, it also limits the model’s ability to distinguish between se-

mantically or functionally different components that share similar textures or shapes [106,

107].

GroundingDINO, while leveraging text-conditioned detection, presents complemen-

tary challenges. The effectiveness of its predictions depends on the quality and speci-

ficity of textual prompts. However, industrial parts rarely possess universally recognized

or uniquely descriptive language, which limits the model’s ability to locate or disam-

biguate components. Moreover, its detection capacity is shaped by priors inherited from

its training on natural-image datasets, which are not representative of industrial part

distributions [106, 107, 26].

Neither model natively supports compositional reasoning or relational understand-
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ing. Their outputs are confined to instance-level predictions without validating global

coherence or enforcing logical constraints across multiple parts. Consequently, when ap-

plied directly to scenes with complex part relationships, their segmentations tend to be

inconsistent or ambiguous. Due to these limitations, CSAD employs SAM and Ground-

ingDINO not as inference-time modules, but as supervisory tools to guide the generation

of pseudo-labels during training.

3.3 Component Clustering and Pseudo-Labeling

Semantic pseudo-labeling serves as a bridge between automated mask generation and

component level segmentation in industrial anomaly detection. In CSAD [24], mask

proposals from SAM and GroundingDINO are refined to approximate individual com-

ponents. These component masks are then clustered using MeanShift, which groups

visually similar regions without requiring a predefined number of clusters. Each cluster

is treated as a pseudo-label representing a component category. These pseudo labeled

masks provide supervisory signals for training a semantic segmentation model, specifically

DeepLabV3+ [108] to make it capable of decomposing objects into semantically mean-

ingful parts. This enables detecting discrepancies in component count, spatial layout, or

logical consistency central to the detection of logical anomalies.

3.3.1 Component Level Segmentation and Patch Histogram

The concept of compositional anomaly detection can be supported by integrating com-

ponent level segmentation with statistical modeling of spatial configurations. One such

approach uses Patch Histogram [39], which offers an explicit mechanism to capture reg-

ularities in component arrangement [39]. This strategy divides a segmented image into

spatial bins and tracks the frequency of pseudo labeled components across regions. The

resulting histograms reflect the compositional structure of normal samples, enabling the
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identification of deviations such as missing, misplaced, or redundant parts [39].

Although segmentation-based reasoning provides interpretable and localized represen-

tations of object structure, it is inherently limited by the discretization imposed through

pseudo-labels and spatial binning [24]. The Patch Histogram, for instance, operates under

the assumption that logical anomalies manifest as explicit deviations in component count

or location. However, not all anomalies conform to this pattern. Certain inconsistencies

may involve subtle visual cues, ambiguous spatial relationships, or violations of overall

composition of scene that cannot be captured through histogram statistics alone [107,

14]. These challenges highlight the need for a complementary mechanism that models

visual representations in order to detecting deviations in both local and global structure.

3.4 Student-Teacher Paradigm as Detection Core

To complement segmentation and Patch Histogam based compositional reasoning, CSAD

also incorporates a feature-based detection module using a student–teacher [70] frame-

work. CSAD implements a pretrained teacher network that encodes normal features using

normal training images, while two student networks, referred to as the (1) local student

and the (2) global student, are trained to approximate these features. Discrepancies be-

tween the teacher and student outputs during inference indicate potential anomalies [70,

109, 110].

CSAD implements local and global students primarily different in their spatial recep-

tive fields, which allows the system to capture anomalies at multiple levels. The local

student is sensitive to fine-grained, localized deviations. In contrast, the global student

integrates broader spatial context and is capable of detecting logical anomalies. By com-

bining these complementary perspectives in the Local- Global Student-Teacher (LGST)

module, CSAD enables detection of both spatially local and distributed anomalies. How-

ever, this division of focus is achieved implicitly through differences in receptive field size,
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rather than through explicit reasoning over component relationships or compositional de-

pendencies.

3.5 Enhancing CSAD With Self-Attention

Self-attention is a mechanism in modern deep learning, particularly in transformer-based

models that plays a crucial role in capturing global dependencies across input data.

Unlike convolutional operations, which are limited to fixed receptive fields and primarily

capture local patterns, self-attention enables each input element to dynamically attend

to all other elements in the sequence, allowing the model to reason over long-range

relationships [29]. Given an input sequence X ∈ Rn×d, where n denotes the number

of tokens (e.g., image patches or spatial positions) and d is the feature dimension, self-

attention first projects the input into three learned spaces:

Q = XWQ, K = XWKand V = XW V .

Here, WQ,WK ,W V ∈ Rd×dk are learnable weight matrices corresponding to the query,

key, and value projections. The attention scores are then computed using the scaled

dot-product:

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V.

The scaling factor
√
dk prevents the dot products from becoming excessively large, which

could otherwise destabilize training when passed through the softmax function. This

mechanism produces a new representation for each token that encodes its relationship

with every other token, allowing the network to incorporate both local and global context.

In practice, multiple attention heads are used in parallel, enabling the model to capture

diverse aspects of the input features.

In the context of this thesis, self-attention is employed to address a critical limita-
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tion of conventional CNN-based anomaly detection methods: their inability to explicitly

model dependencies between spatially distant regions. CNNs, despite their success in

detecting structural anomalies, rely on local receptive fields and are limited in their abil-

ity to identify logical inconsistencies that depend on relationships across separate image

components. Hence, our proposed AeCSAD, integrates self-attention to explicitly model

relational dependencies among segmented components. By enabling global context rea-

soning, AeCSAD captures relationships among components allowing the model to also

consider consider semantic understanding along with local appearance.



Chapter 4

Methodology

Our proposed method, Attention-Enhanced CSAD (AeCSAD), extends the CSAD frame-

work [24], which is organized around three core modules. The first module performs semi-

supervised component-level segmentation, while the second captures component frequen-

cies for counting, as well as their spatial layout to identify structural regularities. The

third module called the Local-Global Student-Teacher (LGST) module, includes two stu-

dent networks namely a local student and a global student. These networks are trained to

learn features extracted from a pretrained teacher network to help structural and logical

consistency. In this work, we preserve this modular design and introduce a self-attention

mechanism in the global student. This enhancement improves the model’s ability to

capture long-range relational dependencies between components, thereby strengthening

its effectiveness in detecting logical anomalies.

4.1 Overview of the Proposed Framework

The overall pipeline starts by detecting distinct components within the images and gener-

ating corresponding semantic segmentation masks using open-vocabulary vision models,

namely RAM++ [25], GroudningDINO [26] and SAM [27]. These masks are passed

through a multistage process designed to group visually similar components and assign

53



Chapter 4. Methodology 54

pseudo-labels. It begins with component wise feature extraction, where each component

is cropped and resized using the diagonal of its minimum bounding rectangle, then aug-

mented through multiple rotations and passed through a pre-trained CNN [55] to obtain

features. A rotation invariant stage in this process averages features across spatial and

rotational dimensions to form compact representations that are robust to orientation.

Next, component clustering is performed using MeanShift [111] algorithm, which

identifies clusters without requiring the number of clusters in advance. To ensure the

reliability of the semantic pseudo-label maps, HDBSCAN [112], a hierarchical density-

based extension of DBSCAN, is applied specifically on the class histograms of the pseudo-

labeled maps rather than on component features. The purpose of this clustering is

to distinguish between reliable and unreliable masks based on the consistency of their

component distributions. As a result, the dataset is partitioned into two subsets: a

labeled set DL = {X l
1, . . . , X

l
Nl
} with corresponding high-confidence pseudo-label maps

{Y l
1 , . . . , Y

l
Nl
}, and an unlabeled set DU = {Xu

1 , . . . , X
u
Nu

} containing images with less

consistent or uncertain masks.

The pseudo labeled masks form the basis for training a segmentation network, specif-

ically DeepLabV3+ [108], in a semi-supervised fashion, where high-confidence pseudo

labeled masks DL are used as supervision signals through supervised objectives and low-

confidence pseudo labeled masks DU contribute only in unsupervised learning objectives

to enhance component level understanding. The trained DeepLabV3+ can then generate

final segmented masks that serve as input to a Patch Histogram module.

The Patch Histogram module generates a grid-based representation and captures

compositional anomalies by encoding the frequency of part occurrences and outputs an

anomaly score. In parallel, the Local-Global Student-Teacher (LGST) module is also

trained. The LGST module consists of the student network, global student network,

and pre-trained teacher network. LGST module compares feature maps from the local

and global student with those of a teacher’s feature maps, enabling the detection of
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structural and global anomalies and generating an anomaly score. The anomaly score of

the LGST module is combined with the anomaly score generated by Patch Histogram

module through a normalization based fusion strategy to produce the final image-level

anomaly score.

4.2 Semantic Pseudo-Label Generation

An effective component-level anomaly detection relies heavily on accurate segmentation

masks that provides individual object parts. However, obtaining such masks through

manual annotation is labor-intensive. We adopt the approach proposed in CSAD, which

leverages an unsupervised method to automatically generate semantic pseudo-labels.

This enables the training of a segmentation network without the need for human-annotated

ground truth, making the process more scalable and efficient. The first stage of the

pseudo label generation pipeline involves leveraging general purpose and open vocabu-

lary vision models to produce component masks. This process comprises two substeps:

(i) automatic textual tag prediction using RAM++[25], and (ii) mask generation using

promptable segmentation models GroundingDino [26] and SAM [27]. These models are

only used during the offline phase and are discarded during inference.

4.2.1 Generating Textual Tags Using RAM++

As discussed in Section 3.1, the Recognize Anything Model++ (RAM++) is an image

tagging model that when applied to normal images, generates a diverse set of tags iden-

tifying visible components in the scene. The generated tag set is manually filtered to

remove irrelevant or ambiguous terms and to retain background and meaningful object-

related nouns. To derive semantic component labels from noisy visual tags, we follow

the RAM++ filtering process proposed in CSAD [24]. The RAM++ conceptual pipeline

process to generate textual tags for an image is shown in Figure 4.1.
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Figure 4.1: Conceptual illustration of textual tags generation using RAM++.

4.2.2 Generating Segmentation Masks for Object Components

The background and object specific textual tags that were derived from RAM++ are

now passed to GroundingDINO [26], an open-vocabulary object detector that localizes

relevant regions in the form of bounding boxes discussed in Section 3.2. A conceptual

illustration of GroundingDINO pipeline is shown in Figure 4.2. Object and background

prompts with image are processed to generate corresponding bounding boxes, which

are subsequently normalized and rescaled to align with objects in the image. These

bounding boxes are then used to guide the first run of the Segment Anything Model

(SAM) [27], discussed in Section 3.2, which produces segmentation masks.

Non-Normalized 
Predicted Bounding 

Boxes

Grounding 
Dino

Bounding Box 
Normalization

Rescaled and 
Normalized 

Bounding Boxes

. . .
. . . . . .

Bounding box for 
objects

Bounding box for 
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Normal 
Image

Figure 4.2: Conceptual illustration of background and object bounding box generation
using GroundingDINO.
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SAM takes the bounding boxes and produces corresponding object and background

segmentation masks for a given image. Depending upon the prompt and visual context,

these masks may capture entire objects, or their individual components resulting in

semantic-guided masks as MG. Among this set, masks that contain background regions,

are explicitly identified and separated from at this stage using background specific textual

tags obtained from RAM++. Subsequently, SAM is executed a second time in automatic

segmentation mode i.e independent of any textual input or bounding boxes. This run is

specifically intended to move beyond high-level object segmentation and toward capturing

finer-grained structural details i.e, the individual components that make up an object.

In its default mode, SAM generates a dense set of candidate masks by analyzing local

visual features throughout the image. The output of this stage is a dense set of masks,

denoted as MS, which captures candidate component regions. Due to the generic nature

of foundation models and the absence of explicit supervision, the initial candidate mask

pool MS contains significant redundancy and noise, including background segments,

fragmented parts, and over-merged components. To address this, we follow CSAD’s two

two-stage filtering strategy.

Segment 
Anything 

Model. . .

. . .

Object and 
Background Masks 

. . .

. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .

. . .. . .

Object Masks

All Possible Image 
Component Masks

Background 
Intersection Based 

Filtering

Object Intersection 
Based Filtering

. . .
Segment 
Anything 

Model

Figure 4.3: Component-level mask generation using SAM. Stage one uses bounding boxes
and prompts to produce object and background masks, forming the set MG after remov-
ing background. Stage two runs SAM in automatic mode to generate candidate masks
MS, which are refined through (i) background intersection filtering and (ii) object align-
ment with MG, yielding the final mask set M∗.
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The first stage, Background Intersection Based Filtering, ensures semantic alignment.

Each candidate mask in MS is compared with the set MG produced by GroundingDINO

guided SAM. Masks with insufficient spatial overlap relative to any mask in MG are

discarded. This enforces that retained regions in MS correspond to plausible object

components. The second stage, Object Intersection Based Filtering, addresses the issue

of spatial compositionality. SAM’s dense proposals may include masks that erroneously

merge multiple adjacent components into a single region. To fix it, the spatial redundancy

of each candidate mask is evaluated by computing the intersection statistics with all other

masks in MS. Masks that exhibit excessive overlap without contributing distinct cover-

age are eliminated, while those representing well-separated entities are combined. The

result of these two stages is a refined mask set, denoted M∗, characterized by stronger

semantic alignment. The complete conceptual process is shown in Figure 4.3 The com-

plete summarized conceptual understanding for component level semantic segmentation

mask generation process is shown in Figure 4.4

Grounding 
Dino Model

RAM++
Model . . . . . .

. .
 .

. .
 .

. .
 .

. .
 .

. . .

Segment 
Anything 

Model

Segment 
Anything 

ModelIntersection 
Based 

Filtering

Textual Tags Bounding Boxes

Figure 4.4: Summarized conceptual overview of pseudo label generation pipeline. The
input image from the breakfast category of the MVTec LOCO AD dataset is processed by
the RAM++ model to extract open-vocabulary textual tags corresponding to both object
and background concepts. These are used by GroundingDINO model to generate bound-
ing boxes, which are used to generate segmentation masks using SAM. An intersection-
based filtering strategy integrates masks from two independent SAM branches to produce
the final semantic pseudo label masks.
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To ensure that components with similar shape and texture are assigned the same

pseudo label, it is important to minimize the impact of rotational variation during feature

extraction. To achieve this, each retained mask mi ∈ M∗ is used to extract a square

crop from the original image, enclosing the component region. This step results in a

set of image patches P = {pi}, where each pi corresponds to an object component that

undergoes through rotations at 0◦, 90◦, 180◦, and 270◦, as well as horizontal and vertical

flips. Each patch is then resized to 64×64 and passed through a pretrained WideResnet-

50 encoder ϕ(·), which extracts features from the 4th layer. These features are aggregated

to form a fixed-length representation fi = ϕ(pi) ∈ Rd. The resulting set of vectors for each

image forms a feature matrix F (i) = [f1, f2, . . . , fn(i) ]T , where n(i) denotes the number of

components in the ith image. This matrix serves as input for unsupervised clustering

and subsequent pseudo-label assignment.

4.3 Clustering and Semantic Label Inference

To assign semantic pseudo labels in an unsupervised manner, the framework uses the

MeanShift algorithm [111], which avoids predefining the number of clusters. MeanShift

identifies clusters of similar components in the visual feature embedding space extracted

from component patches, where each cluster center denotes a group of similar parts. Once

clustering is complete, each patch pi is assigned a cluster label ci ∈ {1, 2, ..., K}, where K

is the number of clusters. These cluster assignments are then mapped back to the original

segmentation masks, producing pseudo-label maps for each training image. To improve

reliability of the pseudo labels masks, hierarchical density-based clustering HDBSCAN

is applied [112] to image-level class histograms where each histogram summarizes distri-

bution of pseudo label classes within an image. This clustering step discovers the most

representative pattern and captures a structure that occurs consistently across multiple

training images. Segmentation masks that fall outside this pattern often due to under
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or over segmentation artifacts, are treated as unreliable. A conceptual understanding is

shown in Figure 4.5

Based on this process, the dataset is partitioned into two subsets: a high-confidence

labeled set DL = {(x(l)
i , y

(l)
i )}, consisting of images with consistent and trusted pseudo-

label maps, and an unlabeled set DU = {x(u)
j }, where the masks are considered too noisy

for direct supervision. This dual-structured dataset forms the foundation for the semi-

supervised training of component level segmentation network. While each pseudo labeled

component corresponds to a localized region within the image, training the segmentation

network requires dense masks that annotate the entire image with semantic class indices.

To achieve this, a complete pseudo-label map is reconstructed for each training image by

compositing the retained component masks based on their spatial locations. Specifically,

the cluster label ci assigned to each component that was determined using MeanShift

clustering, is used to fill the corresponding region of the image with its class index. This

yields a dense semantic label map Y ∈ NH×W , where each pixel is annotated with a

pseudo-class that represents its associated component.

Clustering and Pseudo Label 
Assignment

Histogram 
Module

Generates Histograms Capturing 
Frequencies

HDBSCAN Clusters 
Histograms

Figure 4.5: Overview of the clustering and histogram pipeline. Pseudo-label masks are
clustered into semantic classes, followed by histogram extraction to capture component
distributions.
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4.4 Component Level Segmentation Network

Component level segmentation network enables the identification of discrete parts and

supports downstream reasoning tasks involving the counting of components or detecting

the positional misalignments. By following CSAD, we employ domain-adaptable seg-

mentation network DeepLabV3+ [108] trained entirely using semantic pseudo labeled

masks derived from unsupervised clustering. DeepLabV3+ employs a decoder architec-

ture built on top of a WideResNet-50 encoder pretrained on ImageNet [60, 56]. The

encoder extracts multi-scale features from intermediate layers indexed 1, 2, and 3. These

features are fed into the DeepLabV3+ decoder, which employs an atrous spatial pyramid

pooling (ASPP) module [108] to aggregate contextual information across multiple recep-

tive fields. The use of ASPP enables the decoder to incorporate broad semantic context

while preserving spatial granularity, which is essential for dense component segmentation.

These features, denoted as F seg
T , provide rich contextual information. During training,

the encoder is kept frozen, and only the decoder is updated, ensuring a balance between

semantic expressiveness and computational efficiency.

4.4.1 Training the Component Segmentation Network

With the dataset now partitioned into high-confidence and low-confidence subsets as de-

scribed in the previous Section 4.3, the component segmentation network is trained in a

semi-supervised fashion. The labeled subset DL provides direct supervision through stan-

dard segmentation losses, while the unlabeled subset DU contributes additional training

signals to encourage semantic consistency and prediction confidence.

The learning process jointly optimizes segmentation losses computed over DL, includ-

ing cross-entropy loss LCE, Dice loss LDice, and focal loss LFocal, each formally defined

in Section 4.4.2. To leverage information from DU , two auxiliary losses are employed.

First, the histogram alignment loss LHist enforces global consistency by aligning predicted
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class distributions with those in DL. Second, the entropy minimization loss LEntropy en-

courages confident predictions by penalizing uncertainty. The training process adopts a

staged learning strategy in which supervision is initially restricted to the high-confidence

subsetDL. Once the model has established stable representations under trusted guidance,

the unlabeled subset DU is introduced to incorporate broader variation. This training

setup, where strongly supervised losses guide learning on DL while auxiliary objectives

regularize predictions on DU , reduces the risk of overfitting to noisy pseudo labels and

encourages the model to learn generalizable features and provides better segmentation.

The final loss function is a weighted sum of five terms, each addressing a different aspect

of segmentation quality.

4.4.2 Loss Functions for Component Segmentation

Each component of the total loss function plays a distinct role in guiding the segmentation

network to produce accurate and robust masks, especially in semi-supervised settings:

1. Cross-Entropy Loss

LCE = −
H∑
i=1

W∑
j=1

C∑
c=1

wc y
(c)
ij log ŷ

(c)
ij (4.1)

This is the standard pixel-wise classification loss, where y
(c)
ij ∈ {0, 1} is the one-hot

ground truth label for class c at pixel (i, j), and ŷ
(c)
ij is the predicted probability. The class-

specific weights wc address class imbalance. This loss ensures the predicted segmentation

matches the labeled annotations.

2. Dice Loss

LDice = 1−
2
∑

i,j

∑C
c=1 y

(c)
ij ŷ

(c)
ij∑

i,j

∑C
c=1

(
y
(c)
ij + ŷ

(c)
ij

)
+ ϵ

(4.2)

Dice loss measures region overlap between predicted and ground truth masks. It is
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especially effective in imbalanced settings where some classes may occupy small spatial

areas.

3. Focal Loss

LFocal = −
∑
i,j

C∑
c=1

αc

(
1− ŷ

(c)
ij

)γ
y
(c)
ij log ŷ

(c)
ij (4.3)

Focal loss emphasizes harder, misclassified examples by reducing the relative impor-

tance of well-classified ones. The parameter γ adjusts the focusing effect, and αc balances

class contributions.

4. Histogram Matching Loss

LHist =
C∑
c=1

(
1

HW

∑
i,j

ŷ
(c)
ij − 1

HW

∑
i,j

y
(c)
ij

)2

(4.4)

This loss encourages the predicted class histogram to match the global distribution of

the ground truth. It helps maintain component frequency and layout consistency across

the image.

5. Entropy Loss

LEntropy = −
∑
i,j

C∑
c=1

ŷ
(c)
ij log ŷ

(c)
ij (4.5)

Entropy loss encourages confident predictions in the absence of ground truth, making

it useful in semi-supervised learning. It penalizes uncertainty and promotes sharper class

probabilities.

The final loss function is a weighted sum of five terms, each addressing a different

aspect of segmentation quality:

Ltotal = λ1LCE + λ2LDice + λ3LFocal + λ4LHist + λ5LEntropy, (4.6)

where λ1, . . . , λ5 are empirically chosen weights. A typical configuration uses λ1 = 1.0,
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λ2 = 0.5, λ3 = 0.5, λ4 = 0.3, and λ5 = 0.1.

4.4.3 Lightweight Segmentation for Real-Time Inference

One of the design goals of this segmentation network is to operate without relying on

heavyweight foundation models such as GroundingDINO [26] and SAM [27] during in-

ference. While those models are valuable in pseudo-label generation, they are compu-

tationally prohibitive for real-time or embedded use. During inference, each test image

is processed through this DeepLabV3+ decoder to produce a component level seman-

tic segmentation map that encodes the spatial distribution of component classes. This

segmentation map is subsequently utilized by the Patch Histogram module to generate

histograms as discussed in Section 4.5.

4.5 Patch Histogram Module

The Patch Histogram module operates on semantic segmentation maps generated by com-

ponent segmentation network discussed in Section 4.4. Its primary function is to capture

the spatial frequencies and layout of component classes across the image. This enables

the system to identify logical anomalies that manifest as abnormal spatial distributions.

Given a segmentation map S ∈ NH×W , where each pixel is assigned a cluster index,

the image is conceptually partitioned into a P × P spatial grid. Each patch in this grid

defines a localized region Bij of the image, where i, j ∈ {1, ..., P}. Within each bin Bij,

a histogram vector hij ∈ NC is defined, where C denotes the number of pseudo-classes.

Each entry hc
ij encodes the number of pixels in region Bij that are assigned to component

class c. These histograms serve as structured descriptors of local semantic composition,

forming the basis for detecting part-level irregularities in subsequent anomaly reasoning

stages.

To ensure comparability across samples and to reduce sensitivity to scale variations,
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each local histogram is normalized such that it expresses relative frequency rather than

absolute pixel counts. These normalized histograms are then concatenated in raster-scan

order to produce a global feature vectorH ∈ RP 2·C , which encodes the spatial distribution

of component classes across the image grid. This grid-aware embedding serves as a soft

structural blueprint, capturing the expected layout of object parts.

To statistically model normal structural patterns, histogram vectors Hi are computed

for all training samples belonging to the normal class. From these, the empirical mean

µ ∈ RP 2·C and covariance matrix Σ ∈ R(P 2·C)×(P 2·C) are estimated, defining a multivariate

Gaussian distribution N (µ,Σ) that characterizes the typical spatial configurations under

normal operating conditions. During inference, a test sample yields a histogram vector

Htest, which is evaluated against the learned distribution using the Mahalanobis distance:

Ahist(H
test) =

√
(Htest − µ)⊤Σ−1(Htest − µ). (4.7)

This anomaly score Ahist reflects deviations in component arrangement, accounting for

both inter-class and inter-bin correlations. Higher values indicate stronger departures

from the normal layout, thus signaling potential logical anomalies.

4.6 Attention Enhanced Autoenconder in AeCSAD

We propose AeCSAD that extends the Local Global Student Teacher (LGST) module

of CSAD by introducing a key architectural enhancement in the global student network.

While CSAD’s LGST module adopts a student-teacher paradigm consisting of a frozen

teacher network T and two student networks Slocal and Sglobal, AeCSAD retains this

structure but modifies the global student. Specifically, the global student, originally

implemented as an autoencoder, is enhanced with self-attention blocks metnioned in

Section 3.5 and Section 1.5.

This modification enables the model to better capture long-range dependencies and
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Figure 4.6: Conceptual illustration of anomaly map generation in AeCSAD. LGST mod-
ule consists of a frozen teacher network Tteacher, based on a pretrained WideResNet-50
encoder; a CNN-based local student Slocal; and a global student Sglobal, implemented
as a self-attention enhanced autoencoder. Both student branches aim to replicate the
teacher’s feature representations, and their deviations are used to produce multi-scale
anomaly maps. The segmentation network and Patch Histogram module are used down-
stream to support semantic-guided anomaly detection.

contextual patterns during reconstruction, thereby improving its ability to model struc-

tural normality in complex scenes. All three networks receive the same input image

x ∈ RH×W×3. The students are optimized to minimize their divergence from the teacher

under normal training data. During inference, failure of the student to reproduce the

teacher’s representation implies an anomaly. This framework enables the detection of

both localized structural defects and global semantic inconsistencies without requiring

annotated anomaly data.

4.6.1 Teacher Network

The teacher network T is implemented using a WideResNet-50 [55] backbone pretrained

on ImageNet [56]. This architecture is selected for its widened residual blocks, which en-

hance representational capacity while preserving spatial granularity, an essential property

for identifying fine-scale industrial components. The teacher extracts feature maps from

the second and third convolutional stages, capturing both local structural detail and

high-level semantic context. These multi-scale features are spatially aligned, concate-
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nated, and projected to a fixed-dimensional representation via a 1× 1 convolution. The

resulting feature map, denoted as F teacher
T ∈ RB×C×H×W , serves as a stable supervisory

signal for the local and global student networks.

4.6.2 Local Student Network

The local student Slocal is a shallow convolutional network. Its convolutional layers con-

sists of small kernels (3 × 3) to preserve local detail. There are no downsampling or

pooling operations, which constrains the receptive field to approximately 33 × 33 pix-

els in the input space. This ensures that the local student is sensitive to fine-grained

structural anomalies. Given an input image, the local student produces a feature map

FL ∈ RB×C×H×W that mirrors the shape of the teacher’s output F teacher
T , ensuring spatial

alignment for element-wise comparison. The features predicted by the local student are

compared with the corresponding teacher features at each spatial location to compute

the anomaly map Alocal. This map is calculated as the per-pixel Euclidean distance:

Alocal(i, j) =
∥∥F teacher

T (i, j)− FL(i, j)
∥∥
2

(4.8)

Here Alocal(i, j) denotes the local anomaly score at pixel location (i, j). This network

provides dense anomaly maps highlighting localized visual deviations such as surface

cracks, missing rivets, or misaligned holes.

4.6.3 Global Student Network

The original global student network Sglobal in CSAD [24] utilizes a bottleneck architecture

that progressively reduces the spatial dimensions of the feature map, ultimately collapsing

it to a 1×1 resolution. This design ensures that the receptive field encompasses the entire

image, allowing the network to encode high-level contextual and structural information.

To compare with the teacher features, the compressed representation is subsequently
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upsampled through a projection layer that restores the spatial dimensions. This results

in a dense feature map FG ∈ RB×C×H×W , which mirrors the shape of the teacher output

F teacher
T , ensuring spatial alignment for element-wise comparison. The features predicted

by the global student are compared with the corresponding teacher features at each

spatial location to compute the global anomaly map using:

Aglobal(i, j) =
∥∥F teacher

T (i, j)− F student
G (i, j)

∥∥
2

(4.9)

Here Aglobal(i, j) denotes the global anomaly score at pixel location (i, j), reflecting dis-

crepancies in high-level semantic structure between the teacher and student networks.

Moreover, the global student features F student
G ∈ RB×C×H×W are also compared with the

local student outputs F student
L ∈ RB×C×H×W at each spatial location to compute the

global-local anomaly map using:

Aglobal-local(i, j) =
∥∥F student

G (i, j)− F student
L (i, j)

∥∥
2

(4.10)

Here Aglobal-local(i, j) denotes the combined anomaly score that captures inconsistencies

between coarse semantic reasoning and local pixel-level reconstructions. This bottle-

necked design captures high-level statistics; however, the reliance on CNN encoders and

average pooling limits the model’s ability to encode long-range dependencies and inter-

component semantic structure.

4.6.4 Limitation of Global Student Network in CSAD

The bottlenecked CNN encoder architecture is a heavily downsampled representation to

summarize input features. This is typically achieved through a series of strided convolu-

tions followed by a final projection that collapses spatial dimensions to a single vector.

Such compression removes cues related to spatial arrangement, part orientation, and

component co-occurrence. It assumes that all relevant information is encoded in feature
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content alone, ignoring the role of structure in determining semantic correctness. It fails

to model relational semantics, e.g. the left-right symmetry of parts or presence of invalid

co-occurrence patterns because spatial alignment is discarded during pooling. In sce-

narios where anomalies result from altered spatial arrangements, such as repositioned or

duplicated components, the compressed global representation often lacks the granularity

to distinguish these from valid layouts [113]. This limitation arises because global rep-

resentations prioritize content-based feature aggregation, often learned through channel

mixing, while disregarding spatial dependencies that are critical for interpreting struc-

tural coherence [114]. Consequently, models relying on this type of global representation

are prone to missing relational anomalies.

4.7 Attention Enhanced Global Student Network

To overcome these limitations, we redesign the global student architecture using stacked

self-attention layers that preserves spatial resolution while modeling inter-region depen-

dencies. The proposed AeCSAD integrates self-attention blocks directly into the encoder

and decoder pathways of the autoencoder based global student. Unlike convolutional

filters that capture only local context, self-attention allows every spatial position to in-

teract with every other, enabling the network to learn dependencies across distant regions.

Self-attention serves two main roles: (1) it models long-range interactions between spatial

locations, and (2) it dynamically weighs features based on their contextual importance.

The resulting output encodes not only visual content but also spatial relationships and

part configurations.

4.7.1 Global Student Architecture in AeCSAD

AeCSAD retains the convolutional backbone of the original encoder and interleaves self-

attention layers after selected after fourth and fifth convolutional blocks to introduce
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global contextual reasoning during mid-to-high level feature extraction. These stages are

chosen because they preserve spatial granularity while capturing increasingly abstract

representations. At each of these points, the intermediate feature maps are reshaped

from (B,C,H,W ) into token sequences of shape (B,N,C), where N = H ×W , treating

each spatial location as an individual token. These sequences are then passed through

single-head self-attention blocks, where each token attends to all others using scaled

dot-product attention as described in Section 3.5. The attention scores modulate the

contribution of each location to the contextualized feature map. The output is then

projected back to the original tensor shape and fused with the input via a residual

connection.

These lightweight attention modules effectively enhance the network’s capacity to

capture long-distance dependencies. Importantly, the final representation is not globally

pooled. Instead, the full spatial resolution is maintained during decoding. This ensures

that structural cues preserved by attention can influence the reconstruction directly,

allowing the model to preserve and evaluate spatial correctness. The global anomaly map

with teacher network and the global-local map with local student network are computed

respectively using 4.11 and 4.12:

Aglobal(i, j) =
∥∥F teacher

T (i, j)− F attention
G (i, j)

∥∥
2

(4.11)

Aglobal-local(i, j) =
∥∥F attention

G (i, j)− F student
L (i, j)

∥∥
2

(4.12)

The attention-enhanced global student is fully compatible with the original LGST

module, therefore, the same loss functions are reused to compare attention-enhanced fea-

tures and are discussed in Section 4.7.2. During inference, the attention-enhanced global

student yields features that encode both semantic identity and spatial configuration, and

enables the detection of anomalies such as:
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• Mirror-symmetric misplacements;

• Relational duplications (e.g., two identical parts next to each other); and

• Logical contradictions (e.g., two exclusive parts coexisting).

4.7.2 Loss Formulation and Joint Optimization

The LGST module is trained by jointly optimizing local student network and attention

enhanced global student network to learn the teacher’s feature maps. Let F teacher
T ∈

RB×C×H×W represent the normalized feature maps produced by the teacher, where B

is the batch size, C the number of channels, and H × W the spatial dimensions. The

local student produces output FL ∈ RB×C×H×W , focusing on short-range spatial features,

while the attention-enhanced global student generates F attention
G ∈ RB×C×H×W , leverag-

ing self-attention to capture contextual relationships across spatially distant regions. The

anomaly maps are computed as per-pixel Euclidean distances between the student pre-

dictions and teacher targets. The total training objective consists of three mean squared

error (MSE)-based losses computed over all pixels and channels. These are defined as:

Llocal =
1

BCHW

∑
i,j

∥∥F teacher
T (i, j)− FL(i, j)

∥∥2
2
; (4.13)

Lglobal =
1

BCHW

∑
i,j

∥∥F teacher
T (i, j)− F attention

G (i, j)
∥∥2
2
; and (4.14)

Lfusion =
1

BCHW

∑
i,j

∥∥F attention
G (i, j)− FL(i, j)

∥∥2
2
. (4.15)

Here Llocal, Lglobal, and Lfusion, respectively, measure the error between the teacher and

local student, the teacher and global student, and between the global and local students.

All three losses are computed as mean squared error (MSE) over all spatial positions

(i, j), channels C, batch size B, and feature height and width H×W . This multi-branch
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objective encourages the local student to capture fine-grained spatial details, the global

student to model semantic regularities, and their mutual consistency to be preserved

through fusion alignment. The final loss aggregates these three terms as a weighted sum

and is computed using:

Ltotal = λlocal · Llocal + λglobal · Lglobal + λfusion · Lfusion. (4.16)

Here, λlocal, λglobal, and λfusion are weighting coefficients that balance the influence of each

loss component.

4.8 Anomaly Scoring and Final Decision

At the final stage of the pipeline, multiple signals reflecting different aspects of normality

are combined to produce a unified anomaly score, where normality is defined as the

presence of consistent geometrical structure and semantically valid arrangements among

visual components that reflect both structural integrity and logical coherence. These

signals include (i) distributional irregularities captured by the Patch Histogram module

and (ii) feature-level errors from the attention enhanced LGST module. These modalities

are complementary. Many anomalies manifest in layout rather than content, or vice versa.

To harness this complementarity, the anomaly scores from the two modules are fused

together. Direct score fusion can be misleading due to differences in score ranges and sta-

tistical distributions across modules. Therefore, we follow CSAD’s approach to combine

and normalize scores using a trimmed z-normalization strategy. For a given raw score S,

the normalized score Ŝ is computed as:

Ŝ =
S − µS

σS

(4.17)

Here, µS and σS represent the trimmed mean and trimmed standard deviation of the
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anomaly scores, respectively and are computed for both anomaly scores. These statistics

are computed over a held-out validation set, excluding the lowest and highest 20% of

values. This percentile trimming mitigates the influence of extreme outliers, promoting

more robust and interpretable normalization under varied testing conditions.

The normalization is independently applied to:

• Shist: the Patch Histogram anomaly score; and

• SLGST: the attention enhanced LGST based anomaly score.

The final image-level anomaly score is obtained by a straightforward additive fusion of

the normalized scores from the histogram and attention enhanced LGST modules

Sfinal = Ŝhist + ŜLGST. (4.18)

where Ŝhist denotes the normalized structural anomaly score derived from histogram mod-

ule, and ŜLGST represents the normalized semantic anomaly score obtained via attention

enhanced LGST module.
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Results and Discussion

This chapter outlines the implementation details, training strategy, and hardware con-

figuration used to develop the proposed AeCSAD anomaly detection framework. It also

describes the evaluation metrics and presents the results obtained by testing AeCSAD

on the MVTec LOCO AD dataset. The chapter concludes with a detailed discussion

of the observed results and insights. The experimental setup closely follows the pro-

tocol established in the original CSAD framework [24], ensuring a fair and consistent

comparison.

5.1 Experimental Setup and Dataset

All experiments were conducted on a workstation equipped with an NVIDIA Tesla V100-

SXM2-32GB GPU and an Intel Xeon Silver 4114 CPU. The operating system was Ubuntu

22.04.4 LTS, with CUDA 12.5 and PyTorch 2.4.1. The environment was managed us-

ing Conda, and fixed random seeds were applied across NumPy, PyTorch (CPU and

GPU), and Python’s random module to ensure consistent and reproducible results. The

experiments in this study were conducted using the MVTec LOCO Anomlay Detection

dataset [5], a benchmark dataset specifically designed to evaluate both structural and

logical anomaly detection in industrial settings.

74
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The MVTec LOCO AD dataset [5] consists of high-resolution images across five in-

dustrial object categories: breakfast box, juice bottle, pushpins, screw bag, and splicing

connector. For each category, it provides normal samples and two distinct types of

anomalies: structural and logical. The training set contains only normal data, while the

test set includes both normal and anomalous samples.

We selected this dataset as the primary benchmark for our study because it explic-

itly incorporates logical constraints, such as correct object arrangements, presence or

absence of components, and relational consistency, which are rarely addressed in other

industrial datasets. This makes it uniquely suited for evaluating methods aimed at de-

tecting not only localized physical defects but also context-aware, relational violations.

As our method targets both structural and logical anomaly detection, MVTec LOCO AD

offers the most appropriate and challenging benchmark for validating such capabilities.

To ensure consistency across the model pipeline, only minimal preprocessing was

performed on the input images. No additional data augmentation techniques were applied

beyond standard resizing, except during the pseudo-label generation stage. At this stage,

patch-level augmentations such as random rotation and horizontal or vertical flipping

were employed to enhance sample diversity and improve the robustness of the clustering

process. Furthermore, all input images were normalized using the mean and standard

deviation values of the [56] dataset, aligning with the statistics expected by the pretrained

WideResNet-50 [55] backbone utilized throughout the model.

5.2 Architecture Design

The segmentation network is built upon WideResNet-50 [55] pretrained on ImageNet [56]

based encoder and DeepLabV3+ [108] decoder. We have followed CSAD implementation

and extracted features from layers 1, 2, and 3 of the WideResNet-50 encoder. These

intermediate feature maps are passed to a DeepLabV3+ decoder, which integrates an
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ASPP [108] to expand the receptive field and enhance multi-scale context aggregation.

Batch Normalization [115] is employed after each convolutional block to enhance training

stability and facilitate faster convergence by mitigating internal covariate shift. As the

primary non-linear activation function, the Rectified Linear Unit (ReLU) [116] is used

throughout the network to introduce non-linearity and improve model expressiveness.

No dropout regularization is applied in the architecture.

The teacher network T is implemented using a WideResNet-50 [55] backbone pre-

trained on the ImageNet dataset [56]. Following the design in CSAD, intermediate fea-

tures are extracted from the second and third residual blocks (referred to as block2 and

block3). Features from these two stages are upsampled to a fixed spatial resolution using

bilinear interpolation and then concatenated along the channel dimension. This fused

representation is subsequently passed through a fixed 1× 1 projection layer to produce a

unified feature embedding of size 512× 64× 64, which serves as the teacher’s output. All

parameters in both the encoder and the projection layer are frozen throughout training.

The local student network Slocal is designed as a lightweight CNN. It consists of a

series of five convolutional layers interleaved with ReLU activations and two average

pooling layers, progressively increasing the channel dimensionality from 3 to 512. The

feature maps are then spatially resized using bilinear interpolation to a fixed resolution

of 64 × 64, ensuring compatibility with the teacher’s output. The final feature map is

passed through two separate 1× 1 convolutional heads, producing parallel outputs: one

for alignment with the teacher’s embedding (used in the student-teacher comparison),

and another for reconstruction consistency with the autoencoder. Unlike the teacher, all

parameters in the student network are trainable.

The global student network Sglobal is implemented as a self-attention enhanced con-

volutional autoencoder designed to capture long-range dependencies and contextual re-

lations across the input image. To better preserve spatial context and model global

interactions, two self-attention blocks are embedded within the encoder at resolutions of
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16×16 and 8×8, respectively. The bottleneck representation is then upsampled through

a multi-stage decoder, which includes both convolutional and attention-enhanced layers.

Specifically, additional self-attention modules are integrated into the decoder at inter-

mediate resolutions to reinforce global consistency during reconstruction. Unlike the

teacher, all parameters in the global student are learnable. The autoencoder is trained

to reconstruct the teacher’s features rather than raw input.

5.3 Training Segmentation Network

The training of segmentation network DeepLabV3+ is conducted in two distinct stages

over 120 epochs. To supervise the network, two parallel dataloaders are constructed. One

is sourced from DL mentioned in Section 4.4.1 and provides dense pseudo-label masks

treated as ground truth. The other is built from DU mentioned in Section 4.4.1 and con-

tributes unlabeled images that support regularization. During training, the segmentation

network receives batched inputs from both sources in each iteration.

During the first 40 epochs, the network is trained exclusively on the labeled dataset

DL. In this phase, we also adopt the Logical Synthetic Anomaly (LSA) augmentation

strategy introduced in the original CSAD framework [24]. LSA is selectively applied to

those training samples whose pseudo-labels have passed a filtering criterion and are con-

sidered to be of high quality. The LSA process involves randomly sampling components

from a source image, extracting them using their corresponding segmentation masks,

and pasting them onto a different target image after applying random translation and

rotation. This synthesis generates new training images with logical inconsistencies, and

the associated pseudo-label maps are updated accordingly. These augmented samples

are included in the supervised training pipeline to increase semantic diversity and expose

the model to abnormal spatial configurations.

The labeled set is used to compute a combination of supervised losses including cross-
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entropy, focal loss, and class-balanced Dice loss. These are combined using fixed weights

(λ1 = 0.5, λ2 = 10, λ3 = 1 respectively). All input images are resized to 256 × 256,

converted to RGB format, and normalized to have zero mean and unit variance. The

corresponding labels are segmentation masks of the same resolution where each pixel in-

dex indicates its cluster assignment. The number of semantic classes is variable depending

on the category and typically ranges from 5 to 15. To mitigate class imbalance, especially

when some components occupy disproportionately large regions, sample reweighting is

applied during loss computation. Each training batch includes 16 images, and additional

augmentations such as random horizontal and vertical flips, rotations in multiples of 90

degrees, color jittering, and Gaussian noise are applied in real time. After epoch 40,

the training set uses unlabeled images. From this point onward, unsupervised losses are

introduced: Histogram Matching Loss and Entropy Minimization Loss.

All training is performed with the Adam optimizer using an initial learning rate of

1 × 10−4 and a batch size of 16. A cosine learning rate scheduler is used to gradually

reduce the learning rate to 1× 10−6 by the final epoch. Early stopping was not applied,

as the goal was to reach a consistent performance baseline for comparison.

5.4 Training Student-Teacher Networks

The student-teacher framework is trained using a combination of complementary loss

functions discussed in Section 4.7.2 that supervise both local and global representation

learning. Local supervision encourages the student to capture fine-grained spatial features

from small receptive fields. In contrast, global supervision facilitate the detection of high-

level logical inconsistencies.

The teacher network is initialized with a pretrained WideResNet-50 and remains

frozen throughout the entire training process. It produces high-dimensional features

extracted from layers 2 and 3. The teacher’s features are first concatenated and re-
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sized to a uniform resolution before being projected into a final embedding space of size

512 × 64 × 64. The local student network is trained to replicate the teacher’s feature

embedding using the original input image, which is resized to 256× 256 and normalized

using ImageNet statistics. The output of the local student is interpolated to match the

teacher’s resolution. In contrast, the global student receives a logically augmented vari-

ant of the same input and is trained to reconstruct the teacher’s embedding through a

self-attention-enhanced autoencoder. We follow the training methodology of CSAD and

include the Logical Synthetic Anomaly (LSA) augmentation process to simulate semanti-

cally invalid compositions. These augmented images are passed through both the teacher

and global student networks. All components are optimized using the Adam optimizer

with an initial learning rate of 0.0002 and weight decay of 10−4. A step-based learning

rate scheduler reduces the learning rate by a factor of 10, Training is conducted using a

batch size of 16, with all inputs resized to 256 × 256 and the shared feature embedding

space maintained at 512× 64× 64.

5.5 Metrics and Results

To assess the performance of the proposed AeCSAD, we report the Area Under the

Receiver Operating Characteristic curve (AUROC) as the primary image-level metric for

evaluating anomaly detection across both logical and structural anomaly categories. This

metric quantifies the ability to rank normal and anomalous images across a continuum

of decision thresholds. Mathematically, AUROC is defined as the probability that a

randomly chosen anomalous image receives a higher anomaly score than a randomly

chosen normal image:

AUROC = P(Sanomaly > Snormal), (5.1)

where Sanomaly and Snormal denote the anomaly scores for anomalous and normal images,

respectively. A score of 1.0 indicates perfect separation, while a score of 0.5 implies
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Table 5.1: Comparison of MVTec LOCO AD performance with state-of-the-art methods,
as measured by image AUROC (%). The “AeCSAD” column presents the results of our
method. Bold value represents top value across categories or groups. A value underlined
represents second to top across categories or groups.

No Segmentation Segmentation

Category SimpleNet PatchCore AST EfficientAD ComAD CSAD AeCSAD (Ours)

Logical Anomalies (LA)

Breakfast Box 77.1 74.8 80.0 85.5 91.1 95.8 95.6
Juice Bottle 87.8 93.9 91.6 98.4 95.0 95.4 95.5
Pushpins 69.0 63.6 65.1 97.7 95.7 99.6 100.0
Screw Bag 51.6 57.8 80.1 56.7 71.9 99.3 99.7
Splicing Connectors 72.0 79.2 81.8 95.5 93.3 95.7 97.0

Average (Logical) 71.5 73.9 79.7 86.8 89.4 97.16 97.56

Structural Anomalies (SA)

Breakfast Box 80.9 80.1 79.9 88.4 81.6 85.9 86.2
Juice Bottle 90.4 98.5 95.5 99.7 98.2 97.3 96.7
Pushpins 81.6 87.9 77.8 96.1 91.1 93.2 94.0
Screw Bag 83.3 92.0 95.9 90.7 88.5 91.8 94.5
Splicing Connectors 82.6 88.0 89.4 98.5 94.9 92.4 91.3

Average (Structural) 83.7 89.3 87.7 94.7 90.9 92.12 92.54

Total Average 77.6 81.6 83.7 90.7 90.1 94.64 95.05

performance equivalent to random guessing. Since our method builds upon CSAD, we

inherit its lightweight training and inference pipeline, which involves training local and

global student networks using only normal samples. The main architectural change in our

approach is the introduction of a self-attention mechanism in the global student to better

capture long-range dependencies for logical anomaly detection. While this modification

adds moderate computational overhead during both training and inference due to the

quadratic complexity of attention operations, the overall framework remains efficient

and deployable in real-time settings. Other components, such as the local student and

patch histogram module, remain lightweight and do not significantly impact runtime.

Following the evaluation protocol of CSAD, we compute AUROC scores for each of

the five categories within logical and structural subsets and report the mean AUROC

values for both categories separately. We computed all evaluation metrics using the test

split of MVTec LOCO AD dataset. No data augmentation or test-time ensembling is used
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during evaluation. These metrics also enable precise comparisons with existing baselines

such as SimpleNet [117], PatchCore [14], AST [110], EfficientAD [8], ComAD [59], and

the original CSAD [24] and the quantitative results are shown in Table 5.1.

5.6 Discussion

At a high level, AeCSAD achieves the highest total average AUROC of 95.05%, out-

performing all other segmentation-free and segmentation based baselines. This indicates

that the performance gains introduced by the proposed architecture generalize across

diverse anomaly types. In the logical anomaly categories, the AeCSAD achieves an

average AUROC of 97.56%, exceeding the orginal CSAD (97.16%). In logical anomaly

categories, AeCSAD has also outperformed No-Segmentation based methods such as

PatchCore (71.5%) SimpleNet (73.9%), AST (79.7%) and EfficientAD (86.8%). The in-

corporation of self-attention into the global student enables the model to evaluate part-to-

part consistency across spatially distant regions, leading to more semantically informed

difference maps. In the structural anomaly category, the model also achieves good

results, with an average AUROC of 92.54%, again outperforming segmentation based

methods ComAD (90.9%) and CSAD (92.12%). The Global Student, while enhanced

with self-attention, retains its local sensitivity through early convolutions and refines

spatial consistency via attention. To better understand the observed improvements, the

following sections analyze the results through multiple lenses: architectural design and

category-wise performance.

5.6.1 Interpretation of Logical Anomaly Results

Pushpins In the pushpins category, the model achieves a perfect AUROC of 100.0%,

successfully identifying duplicated or irregularly placed components by leveraging rela-

tional cues. AeCSAD’s self-attention enhanced framework enables holistic reasoning over
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the entire image, allowing it to detect layout-dependent anomalies that are difficult for

convolution-based methods like SimpleNet (69.0%) or PatchCore (63.6%) to capture.

While CSAD (99.6%) perform competitively, AeCSAD matches or exceeds all strate-

gies without relying on additional labels, demonstrating its strength in global spatial

understanding.

Screw Bag Similarly, in the screw bag category, the model achieves a near-perfect AU-

ROC of 99.7%, outperforming both ComAD (71.9%) and CSAD (99.3%). The anomalies

in this category often involve duplicated or missing screws, where the texture and ap-

pearance of individual screws remain locally plausible. The difficulty lies in recognizing

when the overall quantity or spatial arrangement deviates from expectations. AeCSAD’s

attention mechanism allows the model to evaluate layout of object globally, making it

highly sensitive to such subtle logical inconsistencies. This advantage is especially clear

when compared to segmentation-free methods like EfficientAD (56.7%) or AST (80.1%),

which lack mechanisms to reason about part-to-whole relationships.

Splicing Connectors AeCSAD also performs strongly in splicing connectors (97.0%).

In splicing connectors, logical defects typically emerge when individual segments are

swapped, mirrored, or misaligned during assembly. AeCSAD captures these relational

inconsistencies by enabling every image region to attend to all others. This ability proves

especially advantageous compared to segmentation-free methods like AST (81.8%) and

EfficientAD (95.5%), which often misinterpret plausible textures as valid configurations.

It also surpasses ComAD (93.3%) and CSAD (95.7%), demonstrating that attention-

based reasoning improves even over strong semi-supervised and unsupervised baselines.

Juice Bottle In the juice bottle category, logical anomalies typically manifest as miss-

ing caps, misplaced labels, or labels oriented in reversed directions. These anomalies

challenge models to understand the expected spatial and semantic arrangement of visual
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components. AeCSAD achieves an impressive AUROC of 95.5%, which is comparable

to CSAD (95.4%). This strong performance reflects AeCSAD’s ability to reason over

long-range spatial dependencies and capture misalignments between distant parts of the

object. The inclusion of attention-enhanced global features enables the model to detect

when essential components, such as the cap or label, are improperly configured even if the

individual parts are present. In contrast, segmentation-free methods such as SimpleNet

(87.8%) and PatchCore (93.9%) underperform, primarily because they lack the architec-

tural mechanisms to model part-to-part relationships. These methods rely heavily on

local appearance and texture features, which limits their ability to recognize logically

inconsistent but visually subtle anomalies.

Breakfast Box In the breakfast box category, the model scores 95.6%, closely trail-

ing CSAD’s 95.8%, yet still outperforming segmentation-free baselines by a significant

margin; with the best among them, EfficientAD, achieving 85.5%, and others like AST

and PatchCore trailing further behind. This narrow gap between AeCSAD and CSAD

suggests that anomalies in this category may rely less on long-range contextual depen-

dencies and more on localized visual cues. Many of the logical defects in breakfast box

involve subtle shifts in position, missing flaps, or partially obscured elements, all of which

are spatially confined and maintain plausible textures. Such anomalies can be effectively

captured using convolutional operations with moderate receptive fields, which explains

why CSAD remains competitive in this case.

5.6.2 Interpretation of Structural Anomaly Results

Breakfast Box In the breakfast box category under structural anomalies, AeCSAD

achieves an AUROC of 86.2%, slightly outperforming CSAD (85.9%) and strongly outper-

forming ComAD (81.6%), while falling just short of the segmentation-free EfficientAD,

which leads with 88.4%. The narrow margins across these models suggest that struc-
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tural defects in this category are relatively localized or visually prominent, reducing the

reliance on long-range relational reasoning. Common anomalies in this category include

broken edges of the break fast box, damaged fruits, which are often texture-level is-

sues occurring in small regions. These can be effectively captured by both convolutional

models and segmentation-free approaches that are sensitive to local visual irregularities.

Although AeCSAD is designed to enhance spatial reasoning, its ability to compete with

EfficientAD and exceed other baselines reflects its balanced sensitivity to both global

structure and fine-grained texture cues.

Juice Bottle In the juice bottle category, AeCSAD attains an AUROC of 96.7%,

trailing behind unsupervised baselines including CSAD (97.3%), ComAD (98.2%), and

segmentation-free methods like EfficientAD (99.7%) and PatchCore (98.5%). The high

scores across all methods suggest that structural anomalies in this category are visually

salient and can be detected with relatively low reliance on global context. Typical struc-

tural defects in juice bottle include damaged labels, decloration in juices. These features

create clear local deviations in shape or texture and present cues that are easily captured

by both convolutional models and segmentation-free approaches.

Pushpins In the pushpins category, AeCSAD reaches an AUROC of 94.0%, outper-

forming all unsupervised baselines except EfficientAD (96.1%). It also improves over

CSAD (93.2%) and ComAD (91.1%). Structural anomalies in pushpins often include

bent or broken pinheads, missing tips, or abnormal deformations, many of which involve

fine-grained shape disruptions rather than large-scale layout changes. Such defects pose

challenges for methods that rely solely on high-level semantic cues, and instead favor

approaches capable of integrating both local detail and relational context. AeCSAD’s

strong performance here reflects its hybrid capability where it leverages self-attention

to assess coherence across the image while maintaining sensitivity to local deformations

through convolutional features. EfficientAD marginally surpasses AeCSAD, likely due to
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its specialized design for efficient texture-level anomaly detection.

Screw Bag In the screw bag category, AeCSAD delivers a high AUROC of 94.5%,

outperforming all unsupervised baselines including CSAD (91.8%) and ComAD (88.5%),

while coming close to the best-performing method, AST (95.9%), highlighting its strength

in detecting subtle yet structured defects that are visually complex. Structural anoma-

lies in this category typically involve deformed screw shapes, inconsistencies in packaging

seams, misalignments, or torn regions in the plastic bag. These distortions often vary in

scale, location, and appearance, making this a particularly challenging setting that ben-

efits from both local detail capture and contextual reasoning. AeCSAD’s performance

gain over CSAD suggests that the added global attention helps in assessing the overall

coherence of the bag’s visual layout by modeling long-range dependencies. While Asym-

metric Student Teacher (AST) outperforms AeCSAD, the gap is marginal, illustrating

that attention-based reasoning enhances structural anomaly localization in cluttered and

spatially settings like screw bag, even with lightweight architectural modifications.

Splicing Connectors In the splicing connectors category, AeCSAD achieves an AU-

ROC of 91.3%, placing it behind CSAD (92.4%) and further behind top-performing

methods like ComAD (94.9%) and EfficientAD (98.5%). Although AeCSAD maintains

a strong score, this result suggests that its architectural strengths may be less directly

leveraged in this particular category. The structural anomalies in splicing connectors

generally involve surface-level damage, broken connector edges, or scratches. Such de-

fects are often confined to specific regions and exhibit strong local visual signals. Such

anomalies are well suited to models like EfficientAD or ComAD that focus heavily on

high-resolution, texture-based cues without requiring broad spatial reasoning. The dip in

AeCSAD’s performance relative to CSAD might be attributed to the trade-off introduced

by self-attention which may not always prioritize local high-frequency deformations with

the same granularity as texture-oriented baselines.
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5.6.3 Qualitative Results

The qualitative results on some of the MVTec LOCO AD images shown in Figures 5.1

and 5.2 illustrate AeCSAD’s ability to detect and localize both logical and structural

anomalies. Each example shows the original image on the left and the correspond-

ing anomaly heatmap generated by the attention-enhanced LGST module on the right.

Figure 5.1 showcases logical inconsistencies that involve semantic violations in object

relationships or expected configurations. These include misplaced components, missing

parts, duplicated items, and improper arrangements. It shows the types of deviations

that CNN-based detectors typically struggle with due to their limited receptive fields.

In contrast, AeCSAD correctly highlights such anomalies across diverse categories,

benefiting from its self-attention-enhanced global student branch. For example, in the

juice bottle (Figure 5.1b), the missing label is distinctly localized despite having no ob-

vious low-level texture difference. Similarly, AeCSAD accurately flags the duplicated

large screws in the screw bag (Figure 5.1d), demonstrating sensitivity to logical viola-

tions that arise from improper part counts or layout inconsistencies. Figure 5.2 displays

structural anomalies, which involve localized visual defects such as breakage, contami-

nation, or physical deformation. The local student network, operating over pixel-level

feature reconstructions, effectively captures such fine-grained abnormalities. The atten-

tion maps reflect spatial deviations precisely around the defective regions. For instance,

the system highlights the broken pushpin in the center compartment (Figure 5.2c) and

the torn region in the screw bag (Figure 5.2d), emphasizing AeCSAD’s ability to localize

and interpret structural damage with high spatial fidelity. These visualizations demon-

strate not only high detection accuracy but also model interpretability. The heatmaps

provide spatial evidence of decision-making and reflect the complementary strengths of

the LGST and histogram-based scoring modules. Logical anomalies often lead to broad

or relational attention patterns, while structural anomalies produce sharply localized

regions, reinforcing the dual-branch design of AeCSAD.
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(a) Misplaced fruit – breakfast box (b) Missing label – juice bottle

(c) Two pins in one compartment – pushpins (d) Duplicate large screws – screw bag

(e) Miswired cable – splicing connectors

Figure 5.1: Logical anomalies detected by AeCSAD. Each pair shows the original image
(left) and the corresponding attention-based anomaly map (right). These anomalies
involve semantic inconsistencies such as missing components, relational duplications, or
mirrored misplacements. AeCSAD effectively highlights these layout violations across
multiple object categories in the MVTec LOCO AD dataset.
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(a) Biscuit in cereal – breakfast box (b) Foreign object inside bottle – juice bottle

(c) Broken pin in center slot – pushpins (d) Torn bag (upper-right corner) – screw bag

(e) Scratched wire in center – splicing connec-
tors

Figure 5.2: Structural anomalies detected by AeCSAD. Each pair shows the original
image (left) and the corresponding attention-based anomaly map (right). These anoma-
lies reflect physical or geometric defects such as object breakage, incorrect geometry,
inclusion of unexpected items, or localized surface damage. AeCSAD accurately local-
izes these anomalies across diverse object types in the MVTec LOCO AD dataset using
spatial attention mechanisms.
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5.6.4 Architectural Analysis of Logical Anomaly Results

The improvements observed in the proposed method can also be understood through

examination of a self-attention enhanced autoencoder. This change directly addresses

the core limitation of the original CSAD architecture where it lacks the strong ability to

reason over long-range spatial relationships.

The baseline CSAD framework utilizes a convolutional autoencoder to learn global

consistency patterns from the teacher’s latent representations. Although, this design

enables reconstruction-based anomaly detection, it fundamentally inherits the local in-

ductive bias of convolutional operations. By introducing a self-attention mechanism, the

encoder is able to model relationships between spatially distant features, allowing the

model to form a globally coherent latent representation. Moreover, the attention layers

of the decoder reinforce semantic consistency during reconstruction, ensuring that the

generated output conforms not just to local texture expectations but to the holistic struc-

tural layout learned from normal examples. This attention-based enhancement enables

the global student to reason over what features should be present, where they should

be located, and whether their spatial relationships are consistent with learned patterns

of normalcy. As a result, the difference map between the teacher and student becomes

more semantically informed and highlights logical inconsistencies.

5.6.5 Architectural Analysis of Structural Anomaly Results

The proposed method also achieves strong performance in detecting structural anomalies,

despite introducing global reasoning mechanisms that could, in theory, de-emphasize local

detail. Understanding this result requires a careful examination of how anomaly maps are

derived from Teacher network Tteacher, Local Student network Slocal, and Global Student

network Sglobal. The anomaly detection pipeline in the proposed framework computes

two parallel forms of discrepancy with respect to the teacher output:
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• The Local Student attempts to approximate the teacher’s representation using

shallow convolutional layers. Its architectural simplicity biases it toward learning

low-level texture and edge patterns.

• The Global Student, redesigned with attention modules, reconstructs the teacher

features in a way that captures semantic relationships and broader contextual pat-

terns.

For structural anomalies, the Local Student plays a pivotal role. Structural defects

often produce abrupt, local changes in visual appearance. As the Local Student has

a limited receptive field and no mechanism to smooth over inconsistent regions with

global context, it tends to produce high activation in areas with localized visual defects.

This makes it highly sensitive to structural variations. On the other hand, the Global

Student, even though attention-enhanced, continues to be trained to reconstruct teacher

features. Attention mechanisms do not eliminate the model’s ability to preserve local

detail, rather, they enhance it by injecting context selectively. As a result, the Global

Student still detects structural inconsistencies, but in a way that is spatially coherent

and semantically aware.

5.6.6 Summary of Discussion

The presented results offer category-wise improvements along with implications for the

broader field of unsupervised anomaly detection. Chief among these is the recognition

that anomaly detection, especially in complex real-world environments, demands a ca-

pacity for both local perceptual sensitivity and global semantic reasoning. Traditional

convolutional approaches are inherently limited by their inductive bias toward locality.

While this is advantageous for identifying anomalies that manifest as sharp or localized

defects, it leaves models vulnerable in scenarios where the anomaly is not defined by

local pixel deviation but by higher-order inconsistencies in object structure, component
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count, or spatial layout. These are precisely the types of anomalies found in logical

categories, where the notion of normality depends on spatial relationships rather than

texture anomalies.

The performance gains observed in this work across both logical and structural

anomaly categories indicate that architectures which combine shallow, texture-aware

modules with context-aware reasoning mechanisms can achieve robust generalization

across fundamentally different types of anomalies. This suggests a broader paradigm

for future models. Anomaly detection systems should be equipped with mechanisms

that operate not only at multiple scales but also at multiple semantic levels. These levels

range from texture and material composition to part–whole relations. Furthermore, the

use of attention-based reconstruction as a student mechanism introduces an important

shift in unsupervised settings. It enables anomaly detection models to learn not just

“what is present” but also “what is expected” in relation to other components. In sum,

the findings support a generalizable claim that robust unsupervised anomaly detec-

tion requires architectural designs which explicitly model both appearance

and arrangement. The success of such hybrid models opens new avenues not only for

industrial inspection but also for domains where data labels are sparse and anomalies are

defined more by semantic logic than by pixel-level aberration.



Chapter 6

Conclusion

This thesis introduced AeCSAD, an anomaly detection framework that builds upon the

CSAD [24] framework but introduces reasoning-level improvement that yields measurable

performance gains. Our contribution is the architectural modification of the autoencoder-

based Global Student network in the Local-Global Student-Teacher (LGST) module of

CSAD. Whereas the original CSAD model employed a bottlenecked convolutional au-

toencoder for global scoring, the AeCSAD proposed in this thesis extends it with stacked

self-attention blocks. The self-attention mechanism enables the network to model con-

textual interactions between components, a capacity that proves especially valuable in

logical anomaly categories where part identities and arrangements must conform to im-

plicit assembly logic.

The proposed AeCSAD retains modularity by adhering to CSAD’s design principle

of independently normalized scoring branches and late fusion. Each scoring component,

including the Patch Histogram, Local Student, and Attention-Enhanced Global Student,

produces interpretable outputs that enable clearer understanding and visual traceability

of anomaly decisions. This contribution advances the field of visual anomaly detection

by demonstrating that logical reasoning, compositional regularity, and attention-based

feature learning can be effectively combined to detect errors that go beyond surface

92
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texture. AeCSAD represents a step toward making unsupervised industrial inspection

systems more reliable, interpretable, and adaptable to complex real-world scenarios.

6.0.1 Key Findings

The development and evaluation of the proposed anomaly detection framework yielded

several key findings that contribute both practical and conceptual insights into visual

anomaly detection in industrial contexts. First, the integration of independently trained

scoring branches, namely the Patch Histogram, Local Student, and Global Student,

demonstrated a robust and modular architectural design. Each branch contributed com-

plementary anomaly cues: the Patch Histogram captured deviations in component-level

spatial distributions, the Local Student focused on fine-grained appearance irregularities,

and the Global Student modeled high-level contextual inconsistencies. The subsequent

fusion of these signals enabled reliable decision-making while maintaining interpretability

and modular traceability. This result underscores the effectiveness of decoupling anomaly

detection into specialized processing pathways, as opposed to relying on a single end-to-

end model to learn all patterns jointly.

Second, the integration of self-attention mechanisms into the autoencoder-based global

student network resulted in improved performance on the logical anomaly subset of the

dataset. The self-attention layers proved particularly effective in capturing long-range

contextual dependencies, enabling the network to reason about object relationships and

semantic consistency beyond localized pixel-level cues. This architectural enhancement

strengthened the model’s capacity to detect subtle yet semantically significant anoma-

lies, especially those that do not present clear low-level visual deviations. These findings

highlight a broader design principle in industrial anomaly detection: effective systems

are not solely those that classify anomalies, but those that are structured to reason in a

modular, interpretable manner that aligns with the compositional and semantic structure

of real-world manufacturing environments.
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6.1 Limitations

Despite the strengths of the proposed framework, several limitations remain that highlight

areas for further improvement and refinement. These limitations are not only technical

but also conceptual, reflecting the boundaries of current approaches to unsupervised

anomaly detection in real-world industrial scenarios. First, the system’s performance

depends heavily on the quality of semantic pseudo-labels generated in the early stages.

Although foundation models such as SAM and GroundingDINO offer impressive zero-shot

capabilities, their behavior in industrial contexts is often brittle. Visual clutter, occlusion,

poor lighting, and domain shift can lead to segmentation masks that are either fragmented

or semantically incorrect. These inaccuracies propagate into the clustering and training

stages, introducing noise into the segmentation network and ultimately affecting anomaly

scoring. While filtering strategies help reduce the impact of poor masks, the system

remains vulnerable to errors introduced during pseudo-label generation.

Second, the Patch Histogram module, though effective in modeling quantity-based or

compositional anomalies, is sensitive to spatial bin granularity. Coarse binning may ob-

scure meaningful deviations in layout, while overly fine binning can lead to sparsity and

unstable statistical representations. There is also no built-in mechanism to account for

rotational or positional invariance, which may lead to false positives in categories where

object arrangement is naturally variable. The histogram-based approach relies on the

assumption that correct part configurations are spatially consistent across training ex-

amples that may not hold in complex assemblies or multi-view inspection setups. Third,

while self-attention improves the global student’s ability to reason over part relation-

ships, its effectiveness is contingent on exposure to sufficient variation during training.

Infrequent logical configurations or rare component combinations may be incorrectly

flagged as anomalous due to lack of representation. This reflects a broader tension be-

tween learning context-dependent norms and generalizing to exceptions. Additionally,

attention-based models, while interpretable to some extent, are still susceptible to dis-
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tributed or diffuse attention that is difficult to localize or explain definitively. Fourth,

the scoring fusion mechanism, though robust, uses fixed weights across categories and

does not dynamically adapt to category-specific anomaly structures. In categories domi-

nated by texture defects, local scoring may be sufficient, while in logic-heavy categories,

the global or histogram branches carry more importance. A learned or adaptive fusion

mechanism might yield better category-specific performance, but was not explored in this

work due to supervision constraints.

Fifth, the model is trained entirely on RGB (colored) images, and we explicitly assume

that input images are colored during both training and inference. Many of the anomalies,

particularly logical inconsistencies, depend on subtle visual cues such as color, shading,

and texture contrast. These cues play a critical role in enabling the segmentation network

and student–teacher modules to recognize abnormal patterns. If these cues were removed,

as in grayscale images, the model’s ability to detect anomalies would be significantly

impaired. Therefore, grayscale imaging is not supported in the current framework and

would require retraining or a redesign of feature extractors that are sensitive to intensity-

based representations.

Finally, the system lacks an explicit mechanism for uncertainty estimation or self-

assessment. It does not provide a confidence measure or flag instances where the output

may be unreliable. While anomaly scores offer a proxy for deviation severity, they do not

guarantee that the system can detect its own failure modes. Incorporating model uncer-

tainty, calibration techniques, or abstention mechanisms remains an important direction

for future work.

6.2 Future Work

While the proposed framework demonstrates effectiveness in addressing both structural

and logical anomaly detection, it also opens several avenues for future research. These
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directions aim to improve robustness, generalization, semantic richness, and autonomy

in anomaly detection systems operating in complex industrial domains.

6.2.1 Smarter Pseudo-Label Filtering and Selection

The reliance on segmentation masks from foundation models remains a bottleneck in

terms of reliability and control. Future work could explore learning-based or confidence-

aware filtering mechanisms that assign quality scores to candidate masks before clus-

tering. By introducing pseudo-label selection criteria based on intra-cluster consistency,

objectness, or cross-model agreement (e.g., SAM vs. GroundingDINO, the system could

better isolate high-confidence training samples and avoid noisy supervision.

6.2.2 Slot Attention or Part Graph Networks

While self-attention improves relational reasoning, it remains limited in terms of explicit

representation of parts. Future architectures may benefit from more structured rela-

tional encodings, such as slot attention [118] or component-centric graph neural networks

(GNNs) [119]. These models would allow parts to be explicitly identified, embedded,

and linked through spatial or semantic relationships. Logical inconsistencies could then

be detected by reasoning over graph topology or learned relational embeddings.

6.2.3 Category-Agnostic Generalization and Few-Shot Adapta-

tion

While the current model performs well within known categories, generalizing to entirely

new object types or categories with few normal examples remains an open challenge. Ex-

ploring few-shot adaptation strategies such as feature adaptation via contrastive learning,

pseudo-label bootstrapping, or episodic training—could help extend this framework to

zero or few-shot anomaly detection without requiring extensive retraining [120, 121].
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6.2.4 Self-Supervised Segmentation Pretraining

Although the segmentation network is trained using pseudo-labels, its backbone remains

frozen and initialized from ImageNet. Future work could explore self-supervised segmen-

tation pretraining within the industrial domain itself. This might enable the model to

better extract domain-relevant part-level features without relying entirely on pretrained

visual representations [122, 123].
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