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Abstract

Applying image matting techniques directly to video matting presents challenges, pri-

marily due to the complex temporal dynamics inherent in video data. In this work,

we studied two Meta Learning approaches—Boosting with Adapters (BwA) and Boost-

ing using Ensemble (BuE)—to tackle the task of video matting using pre-trained image

matting models. BwA refines (image matting) alpha mattes by fine tuning pre-trained

segmentation models, which we refer to as adapters, using video frames. BuE, addition-

ally, combines multiple fine-tuned adapters using a convolutional neural network. We

introduced a meta-learning architecture that incorporates both adapters and ensemble

boosting through an iterative process of expert selection and fine tuning. Based on our

evaluation on benchmarks based on a standard video matting dataset (VideoMatte240K),

we confirm that the proposed scheme improves the performance of image matting mod-

els on the task of video matting. In addition, the proposed approach also improves the

performance of VMFormer (c. 2022), a recent video matting method.

Keywords: video matting; alpha matte enhancement; adaptive segmentation models;

meta-learning; ensemble;
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Chapter 1

Introduction

In the world of digital media, there is a widespread and growing need for advanced visual

content in different industries. This demand encompasses areas such as film production,

Virtual and Augmented Reality (VR and AR), advertising, and online education [1]. All

these fields require effective methods to produce realistic and engaging visual content.

Video matting, a set of methods and techniques, responds to this need by allowing the

separation of subjects from backgrounds in video frames. This process is essential for

adding special effects, merging real and virtual footage, and enhancing overall visual

quality. The role of video matting is central in not only improving the digital content

but also in ensuring its interactive qualities. As the demand for digital media continues

to rise, video matting come out as a key solution, addressing the challenges of modern

visual content creation.

1.1 Motivation

The journey from image segmentation to video matting has been marked by signifi-

cant advancements, each building on the foundation laid by earlier methods. Initially,

image segmentation models, with their complex structures and extensive training on

large datasets, paved the way for developments in image matting. These image mat-

1



Chapter 1. Introduction 2

Figure 1.1: An example of video matting. Top row: Consecutive original frames. Middle
row: Corresponding alpha mattes. Bottom row: Extracted frames with new backgrounds.

ting techniques, which focused on accurately separating foreground elements from static

backgrounds, demonstrated the potential of applying sophisticated neural network archi-

tectures to solve complex visual tasks.

The availability of strong, pre-trained image matting models, trained on vast and

diverse datasets, has provided a rich foundation for further innovation. These models have

been instrumental in achieving high accuracy in image matting, setting a precedent for

quality that is challenging to replicate in dynamic environments such as video sequences.

As the field progressed, the focus shifted from still images to videos, introducing the

need for techniques that could handle the dynamic nature of video sequences. Researchers

experimented with various architectures, including Long Short-Term Memory networks

(LSTMs) and transformers [2, 3], to tackle the challenges of video matting, such as

maintaining consistency across frames and managing changing scenes. Unlike image

matting, video matting models are much more complex and resource-intensive to train

from scratch, given their need to understand and process temporal dynamics alongside

spatial information.

In our research, recognizing the challenges of training video matting systems and

the existing capabilities of image matting models, we aimed to bridge this gap through

meta-learning. Drawing inspiration from meta-learning, which enables models to quickly

adapt to new tasks using limited data, we explored its application in adapting pre-
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trained image matting models for video matting. Our goal was to develop a method

that could leverage the existing strengths of image matting models and enhance them

for video content, achieving high-quality matting results with less reliance on extensive

computational resources and large datasets. This approach seeks to make video matting

more accessible and efficient, harnessing the power of meta-learning to adapt robust

image matting solutions to the more complex and dynamic domain of video matting.

1.2 Thesis Outline

In this thesis, Chapter 2 lays the groundwork by providing a background on the main

concepts central to our study. It delves into the preliminaries necessary for understanding

the subsequent chapters. Chapter 3 reviews both traditional and deep learning methods

in segmentation, image, and video matting, offering a comprehensive overview of existing

methodologies and developments in these areas. Chapter 4 is dedicated to our approach

and methodology, where we detail the specific strategies and techniques employed to

address the challenges of video matting. In Chapter 5, we present our experiments and the

results obtained, showcasing the practical application and effectiveness of our methods.

Finally, Chapter 6 concludes the thesis, summarizing our findings and discussing the

limitations and potential avenues for future work in this field.

1.2.1 Contributions

Our thesis makes the following contributions to the field of video matting:

• Adaptation of Image Matting to Video Contexts: We extend image matting

techniques to video matting by applying transfer learning. This method addresses

the dynamic complexities of video, enhancing the adaptability of matting tech-

niques to the temporal information found in video sequences.
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• Boosting with Adapters (BwA): Our research introduces a novel boosting

method that refines alpha mattes through the use of advanced segmentation models.

This methodology significantly improves the accuracy and realism of video matting

results.

• Boosting using Ensemble (BuE): We have developed an ensemble method that

combines multiple fine-tuned adapters to enhance the overall quality of video mat-

ting. This approach boosts the robustness and effectiveness of matting systems

across varied video content.

• Multi-stage training In our approach, we designed a two-stage process to enhance

video matting. Initially, we fine-tuned adapters and selected the most effective

ones based on their performance. Subsequently, we froze these adapters’ weights

and trained an ensemble layer to intelligently combine their outputs, significantly

improving the overall quality of the matting results.



Chapter 2

Preliminaries

In this chapter, we introduce the key concepts essential to our research. This chapter

serves as a groundwork, discussing topics such as image segmentation, image matting,

video matting, and meta-learning techniques. Image segmentation and matting provide

the basis for understanding how objects are delineated and extracted from images, a fun-

damental task that feeds into the more complex task of video matting. This extension

into video matting is crucial, as it incorporates the challenges of motion and temporal con-

tinuity. Additionally, meta-learning techniques provide us with strategies for enhancing

learning accuracy, essential for the tasks involved in video matting. This chapter estab-

lishes a solid theoretical base, preparing for the detailed research and analysis ahead in

the thesis.

2.1 Image Segmentation

Image segmentation is a task in computer vision, where the goal is to partition an image

into multiple segments, each corresponding to different objects or regions [4].

As we discussed in previous sections, a color image is represented as a tensor I ∈

R3×m×n. In the context of image segmentation:

5
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• The image is assumed to be composed of multiple objects {O1, O2, . . . , On}.

• Each object Oi is a collection of pixels, forming a subset of the image.

• Formally, an object Oi can be represented as Oi ∈ P(m× n), where P denotes the

power set of all pixel coordinates in image I.

To model an object O as a tensor, we use a learning model M ∈ {0, 1}m×n where:

(i, j) ∈ O ⇐⇒ M[i, j] = 1.

This model M represents a mask for the object, with 1 indicating the presence of the

object at pixel location (i, j).

2.1.1 Segmentation Task

The task of image segmentation involves determining the mask for one or more objects

present in an image [4]. If there are Z objects, then a training sample can be represented

as a pair (I,M), where I is the input image and M is the output multi-object mask in

{0, 1}Z×m×n.

A neural network solution for image segmentation might be structured as follows:

• Input: I ∈ R3×m×n, representing the image.

• Output: p ∈ [0, 1]Z×m×n, representing the probabilities of object presence.

• For each pixel location (i, j) and object k, p[k, i, j] ∈ [0, 1] denotes the probability

that pixel (i, j) belongs to object Ok.

This problem can be solved with a multi-layer neural network. The specific architec-

ture and configuration of the network can be different based on the requirements of the

segmentation task. In the related work section, we will discuss several existing methods
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for image segmentation using deep neural networks which have been shown to be effective

in segmentation tasks.

2.1.2 Evaluating Image Segmentation Model

The effectiveness of an image segmentation model can be quantified using a loss function.

For image segmentation tasks, particularly those involving binary classification of pixels,

the Binary Cross Entropy (BCE) loss [5] is commonly used.

Binary Cross Entropy Loss

The binary cross entropy loss for a multi-object segmentation task is computed over each

object and each pixel in the image. Given a training sample with the ground truth mask

M ∈ {0, 1}F×m×n and the predicted probability map p ∈ [0, 1]F×m×n, the BCE loss L is

calculated as follows:

L = −
F∑

k=1

m∑
i=1

n∑
j=1

(M[k, i, j] log(p[k, i, j]) + (1−M [k, i, j]) log(1− p[k, i, j])) .

Here, for each object k and pixel location (i, j), M[k, i, j] is the ground truth label

(0 or 1), and M[k, i, j] is the predicted probability of belonging to the object Ok. The

binary cross entropy loss is effective in segmentation tasks as it directly measures the

discrepancy between the predicted probabilities and the actual labels at the pixel level.

It encourages the model to predict probabilities that are close to the ground truth binary

labels, thereby improving the accuracy of the segmentation.
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2.2 Image Matting

Image matting is a task in computer vision, focusing on the precise extraction of fore-

ground elements from the background of an image. This section outlines the mathemati-

cal formulation and the neural network approach for image matting. We will also explore

traditional methods and neural network approaches in greater detail in the related work

section.

2.2.1 Mathematical Formulation of Image Matting

In image processing, an image denoted as I is represented as a three-dimensional tensor

within the space R3×m×n. A key task in image matting is the computation of an alpha

matte, symbolized as α. This alpha matte is essentially a two-dimensional matrix where

each element corresponds to a pixel in the image, with values ranging from 0 to 1. Here,

the value α(i, j) indicates the transparency degree of the pixel located at position (i, j),

where 0 represents complete transparency (entirely background) and 1 signifies complete

opacity (entirely foreground).

The matting equation, as described in [6], articulates the relationship between the

image, the foreground, the background, and the alpha matte through the formula:

I(i, j) = α(i, j) · F (i, j) + (1− α(i, j)) ·B(i, j),

where F(i, j) and B(i, j) represent the foreground and background colors at the pixel

(i, j), respectively. This equation posits that the color of each pixel in the image is

a blend of the foreground and background colors, modulated by the alpha values. A

practical challenge in image matting is accurately determining the alpha matte α when

only the image I is known, while the foreground F and background B are unspecified.

The development of image matting began with traditional techniques that relied heav-

ily on user input. Techniques such as manual trimap creation and color sampling were
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the mainstays, requiring significant manual effort and struggling with complex textures.

With advances in computational capabilities, semi-automated tools came out, reducing

the reliance on manual input. Techniques like Bayesian matting [7] and graph cut-based

algorithms offered more image understanding, improving the handling of edges and semi-

transparent areas but still facing challenges with intricate details and varied lighting.

The use of deep learning significantly advanced the field of image matting. Neural

networks, particularly convolutional neural networks (CNNs), began to be used for direct

alpha matte prediction, excelling in handling complex details and diverse conditions.

Today, image matting is continuously developing, with research focusing on more

efficient architectures, handling of edge cases, and reduction of high-quality data de-

pendency. Developments like the integration of depth maps and generative adversarial

networks (GANs) are at the forefront of current advancements.

In the related work section, we will present specific works and advancements in image

matting, examining key milestones and state-of-the-art techniques in greater detail.

2.3 Video Matting

Video matting extends the principles of image matting to the dynamic and temporal

aspects of video content. Unlike static images, a video comprises a sequence of frames,

each with its unique challenges in matting.

2.3.1 Mathematical Framework for Video Matting

• Video Representation: A video V is a series of images over time, represented as

V = {I1, I2, . . . , It}.

• Sequential Alpha Mattes: For each frame It in R3×m×n, a corresponding al-

pha matte αt, αt ∈ [0, 1]m×n, is computed. This results in a set of alpha mattes

{α1, α2, . . . , αt} for the video.
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One of the main challenges in video matting is ensuring the temporal consistency

of the alpha mattes across the video sequence [8]. Temporal consistency implies that

the alpha mattes of adjacent frames, αt, should not exhibit abrupt. This is crucial for

achieving a seamless and realistic foreground extraction in the video playback. Mathe-

matically, this can be expressed as ensuring the consistency of αt with αt−1 and αt+1,

particularly in regions of the frame experiencing motion or other changes. Achieving this

consistency often involves integrating temporal information into the matting algorithm.

Techniques such as motion vectors or optical flow are used to adjust αt based on the

observed changes from frame It−1 to It. This approach helps in maintaining the natural

flow and realism of the extracted foreground over time.

In the related work section, we will delve deeper into specific works and research

that have contributed to the field of video matting, highlighting key methodologies and

breakthroughs in both traditional and deep learning approaches.

2.4 Meta Learning Methods

Meta-learning [9] offers a powerful framework for enhancing machine learning models by

aiming to improve their overall learning accuracy. This concept is particularly promising

for video matting because it allows the integration of multiple weaker learners to create a

stronger, more robust system through fine-tuning. By utilizing meta-learning techniques,

we can leverage existing model checkpoints, which can then be fine-tuned to adapt effec-

tively to specific video matting tasks. This ability to adapt quickly and efficiently makes

meta-learning an ideal approach for handling the dynamic and complex nature of video

sequences.

In this research, we explore two specific meta-learning strategies: using residual net-

works and boosting (an ensemble method). These approaches are chosen for their poten-

tial to enhance learning from limited data examples and their ability to generalize across
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various video matting scenarios. By integrating these meta-learning techniques, we aim

to address the challenges of video matting and push the boundaries of what current

systems can achieve, both in terms of performance and efficiency.

2.4.1 Meta-Learning using Residual Networks

Residual learning [6] focuses on training layers to model a residual function, which refers

to the difference between the desired output and the current output of the network.

Suppose we have a target function f(x) and a weak learner Mθ(x) that is currently

unable to accurately approximate f(x). This inadequacy is quantified by a significant

loss, loss(f(x),M(x)). To enhance Mθ(x), we introduce a residual layer Rθ as follows:

Figure 2.1: Diagram of a Residual Block

The architecture of Rθ can be designed based on the specific requirements of the

task. A simple version of Rθ(x) could be a linear function, such as Rθ(x) = Ax + B,

with parameters θ = (A,B). In this setup, if both A and B are zero, Rθ(x) effectively

becomes zero. However, more complex designs can incorporate convolutional layers,

pooling layers, and non-linear activation functions like ReLU. These additions enable the

residual layer to learn more complex modifications to the initial learner’s output.

We can compose the main learner and the residual layer as follows:
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Figure 2.2: Composition of a Main Learner and a Residual Layer in a Meta Learning
Model.

We define θ∗ as the model parameter for which Rθ∗(x) = 0. This configuration ensures

that the residual layer does not alter the output of Mϕ(x) when it is not necessary. The

main learner Mϕ and the residual layer Rθ can then be composed to form an enhanced

model. If θ = θ∗, then the model M is equivalent to M0, ensuring that the enhanced

model is at least as accurate as the original weak learner Mϕ.

The integration of the residual layer allows for the improvement of the weak learnerMθ

through an iterative learning process. By applying gradient descent to∇θLoss(f(x),M(x)),

the model learns the optimal parameters of the residual layer. This process involves

adjusting θ to minimize the loss, thereby learning the residuals needed to correct the

predictions of Mθ(x) and bring them closer to f(x).

The use of residual layers in neural networks offers several advantages. Primarily,

it allows for the enhancement of existing models without the need to increase their

complexity significantly. This method is particularly beneficial in scenarios where adding

more layers or increasing the depth of the network is not feasible due to computational

constraints. Furthermore, residual learning can help alleviate the problem of vanishing

gradients in deep networks, making it easier to train deeper architectures.

2.4.2 Meta-Learning using Boosting

Another method in meta-learning, particularly relevant in complex classification scenar-

ios, is boosting with the ensemble method. This approach addresses the limitations

inherent in using a single binary classifier, especially when dealing with non-linear or
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high-dimensional input spaces. Linear classifiers often struggle in these scenarios due to

the non-linear nature of separation boundaries.

Boosting algorithms, such as AdaBoost [10] and XGBoost [11], begin with a basic

premise: starting with a weak learner, an algorithm that performs slightly better than

random chance. The strategy then involves incrementally adding more weak learners

to this ensemble. Each new learner is tasked with correcting the errors made by its

predecessors. This iterative process enables the ensemble to progressively improve its

ability to classify complex data accurately.

The ensemble [12], often conceptualized as a decision tree, navigates through different

choices based on the input data. The ensemble layer within this tree decides which weak

models, such as M1 or M2, are best suited for the given input, leading to one of several

possible outputs. This process is akin to navigating through a decision tree, where each

branch represents a decision made by a particular weak model.

Figure 2.3: Schematic Representation of an Ensemble Decision Process.

Furthermore, this decision tree can be modeled as a neural network where the ensem-

ble layer combines inputs, denoted as y1 and y2, based on the initial input x, to arrive at

the final output y. This representation illustrates how the ensemble method integrates

multiple weak learners to formulate a more accurate classification decision.
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Figure 2.4: Illustration of an Ensemble Neural Network.

Central to the boosting process is the decision function, defined as select-best-model(x).

This function is responsible for selecting the most appropriate weak model for a given

input x. The final output is then derived from the selected model Mi(x). Importantly,

this function is not predefined but is learned during the training phase. It evolves as a

black-box function, optimized based on the training data, to effectively determine the

best model for any given input.

In essence, boosting with the ensemble method exemplifies the power of meta-learning

in complex classification tasks. By systematically combining the capabilities of multiple

weak learners, it creates a robust and adaptive classification system capable of handling

intricate, non-linear, and high-dimensional data, overcoming the constraints of individual

linear classifiers.
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Related Work

In the realm of computer vision, the tasks of image segmentation and matting play

pivotal roles in understanding and processing visual information. Image segmentation,

the process of partitioning an image into multiple segments, lays the groundwork for

more advanced tasks such as image matting. Image matting extends this concept further

by precisely extracting foreground elements from the background, usually in still images.

This technique is crucial for isolating subjects in an image, allowing for detailed editing

and manipulation.

The principles of image matting are then extrapolated to the more dynamic and

complex medium of videos, leading to the task of video matting. Video matting involves

separating foreground elements from backgrounds in video sequences, requiring a high

degree of consistency across sequential frames – a challenge that is uniquely presented in

the video format as opposed to still images.

In recent years, the field has undergone a significant transformation, marked by a shift

from traditional methods to more sophisticated techniques, especially with the advent of

deep learning. Deep learning approaches, grounded in the principles of machine learning,

have shown remarkable capabilities in both image segmentation and matting. They offer

enhanced results, particularly when dealing with complex scenarios in image and video

15
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formats.

This section aims to provide a comprehensive overview of the progression in image

segmentation, image matting, and video matting techniques. It will trace the evolution

from early conventional methods to the latest advancements in deep learning, highlighting

how each stage has contributed to the field’s development and the challenges they address

in computer vision.

3.1 Image Segmentation

3.1.1 Traditional Methods

Before the introduction of deep learning, traditional image segmentation methods were

widely used. These methods can be classified into several categories:

1. Thresholding Methods: This category represents the simplest form of image seg-

mentation. It involves dividing an image into foreground and background segments

by setting a threshold value. Depending on this threshold, pixels are classified as

either belonging to the foreground or the background [13]. There are two types of

thresholding: global, which uses a single threshold value for the entire image, and

adaptive, which applies different threshold values across different image areas [14].

2. Edge-Based Methods: These methods focus on detecting discontinuities in an

image’s brightness or color, which are indicative of edges [15]. Techniques such as

the Canny, Sobel, and Prewitt edge detectors are commonly used for identifying

these edges, which then aid in segmenting the image into various regions [16].

3. Region-Based Methods: In this approach, segmentation is based on identifying

regions within the image that share similar characteristics [17]. The key techniques

here are region growing, which starts from a seed point and expands by adding

neighboring pixels with similar properties, and region splitting and merging, which
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involves dividing the image into regions and then combining or separating them

based on predefined criteria [18].

4. Clustering Methods: These methods involve grouping pixels into clusters based

on certain properties like color, intensity, or texture [19]. Common clustering algo-

rithms used for this purpose include K-means, Fuzzy C-means, and Mean-Shift.

5. Histogram-Based Methods: Utilizing the image’s histogram, these methods

segment an image by identifying significant peaks, valleys, and slopes within the

histogram, which correspond to different regions in the image [20]. This approach

is particularly effective in images with distinct intensity levels.

While traditional methods were effective for simpler applications, they had limitations

in handling complex images, especially where the variation in object appearance, shape,

and size was significant. These methods often required manual tuning of parameters

and were not robust against noise and variations in lighting conditions. Also, traditional

methods generally lacked the ability to learn from data, making them less adaptable and

flexible compared to deep learning-based approaches.

In the following, we will explore how the advent of deep learning revolutionized image

segmentation, offering more powerful, adaptable, and robust methods.

3.1.2 Deep Learning Methods

The limitations of traditional image segmentation methods have led to the adoption of

deep learning techniques, notably convolutional neural networks (CNNs), which excel in

handling complex real-world images [21]. Deep learning models automatically learn to

identify patterns and structures from large datasets, eliminating the need for manual

feature selection or parameter tuning.

These models excel in semantic segmentation, classifying each pixel into predefined

categories, essential in applications like medical imaging or autonomous driving. They
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are also robust against common image processing challenges, such as lighting and scale

variations, due to their training on diverse datasets. The success of deep learning in

image segmentation is largely due to the availability of large annotated datasets and

advanced computational resources, marking a significant advancement in the field.

In the following sections, we’ll explore the deep learning models and techniques in

image segmentation.

DeepLabv3

DeepLabv3 is a key development in the use of deep learning for semantic image segmenta-

tion, well-known for its atrous convolution technique [22]. This approach allows the model

to understand different scales in an image without losing detail. An important feature in

DeepLabv3 is the use of atrous convolution, which broadens the filter’s view, making it

better at segmenting objects. It also includes an atrous spatial pyramid pooling (ASPP)

module. This module examines the image at various levels, helping the model deal with

objects that are different in size. DeepLabv3’s design, which combines atrous convolution

and ASPP, sets it apart in tasks that need detailed segmentation across scales. Its strong

performance in tests shows it’s effective for complex segmentation needs.

Figure 3.1: DeepLabV3’s Architecture. This figure is taken from [23].
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Figure 3.2: Multi-scale Attention Net’s Architecture. This figure is taken from [24].

Multi-scale Attention Net

MANet, standing for Multi-scale Attention Net, brings a new approach to image segmen-

tation by using attention mechanisms [24]. Its key feature is focusing on different levels

of detail in an image, which helps in segmenting both small and large objects accurately.

This multi-scale attention is particularly helpful when the image has objects of various

sizes or when it’s hard to tell objects apart from the background. MANet is versatile and

performs well in complex situations, making it useful in areas like medical imaging for

detailed analysis and in autonomous vehicle technology for recognizing different objects

in a scene.

Pyramid Attention Network

The Pyramid Attention Network (PAN) is another development in using deep learning

for image segmentation. Its main feature, the pyramid attention mechanism, blends both

local and global context to improve the way features are represented, leading to better

segmentation performance [25]. PAN’s pyramid attention module works with the feature

map at various scales, capturing different levels of context. This allows the model to

effectively concentrate on the important features, no matter their size or where they are

in the image. By merging local details with an overall view, PAN can accurately segment

complex images, even those with diverse object sizes and detailed backgrounds.
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Figure 3.3: Pyramid Attention Network’s Architecture. This figure is taken from [25].

LinkNet

LinkNet is another deep learning model known for its fast and efficient image segmenta-

tion, especially in real-time processing [26]. Its structure is based on an encoder-decoder

architecture, designed to be quick without losing accuracy in segmentation. The main

feature of LinkNet is its link connections. These connections effectively merge features

from both the encoder and decoder parts of the network. This setup allows for fast move-

ment of information and gradients, which is crucial for applications that need real-time

processing. The encoder part of LinkNet is responsible for pulling out features from the

input image, and the decoder then uses these features to build the segmentation map.

Figure 3.4: LinkNet’s Architecture. This figure is taken from [26].
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Figure 3.5: Feature Pyramid Network’s Architecture. This figure is taken from [27].

Feature Pyramid Networks

Feature Pyramid Networks (FPN) are also important in image segmentation, especially

known for dealing with objects of different sizes [27]. FPN creates a feature pyramid from

a single image, which helps in detecting and segmenting objects no matter their scale.

What makes FPN innovative is its unique top-down architecture with side connections.

This design mixes features that are low in resolution but high in meaning with those

that are high in resolution but lower in meaning. This combination allows the network

to create detailed feature maps at all scales, enhancing its ability to segment images with

objects of various sizes.

UNet

UNet is a widely recognized model in image segmentation, particularly valued for its

use in medical image analysis [28]. UNet’s design is unique for its symmetric structure,

which helps in accurately identifying specific locations and understanding the context in

images, both crucial for precise segmentation. The model consists of two main parts: a

contracting path that captures the overall context, and a symmetric expanding path that
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Figure 3.6: UNet’s Architecture. This figure is taken from [28].

focuses on precise localization. What enhances UNet’s design are the skip connections

that link these two paths. These connections allow detailed context information to be

carried over to the higher resolution layers. This feature is key for combining simpler, low-

level features with more complex, high-level ones, leading to more detailed and accurate

segmentation.

3.2 Image Matting

3.2.1 Traditional Methods

At the early stages of image matting research, techniques based on samples were leading

the field. Berman et al [29] introduced a novel method using a cursor to select dominant

colors in images. This technique was particularly effective, as it produced several can-

didate mattes for each pixel, skillfully addressing the complexities in semi-transparent
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areas of images. In a distinct approach, Chuang et al. [7] adopted a Bayesian method.

Their research focused on estimating the opacity of each pixel, integrating a probabilistic

approach into sample-based methods.

As research in image matting progressed, there was a gradual shift towards methods

based on propagation. A notable contribution by Sun et al. [30] redefined the matting

problem as a task of solving Poisson equations. This shift brought notable improvements,

particularly in dealing with complex scenes. At the same time, Levin et al. [31] explored a

deterministic path. Their work involved formulating a cost function to analytically solve

the matting problem. Their method was based on how the foreground and background

colors in an image are related.

3.2.2 Deep Learning-Based Methods

The progress in both sample-based and propagation-based methods created a foundation

for deep learning to enter the field of image matting. The goal was to increase accuracy

and efficiency. However, before 2017, deep learning was not much used for image matting

due to hardware limitations and not having enough data to train the deep learning models

effectively.

Trimap-Based methods

The significant turning point in image matting came with the study by Xu et al. [6] Their

research showed the potential of deep learning in image matting and tackled the exist-

ing limitations. They employed an encoder-decoder matting network combined with a

smaller refinement network, achieving unparalleled results on both the alphamatting.com

benchmark [32] and their Composition-1K benchmark [6], which later became a key stan-

dard for evaluating image matting.

A key contribution of their work was the creation of the Adobe Deep Matting dataset,

which initially had 431 images along with their corresponding ground truth alpha mattes.
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By using these alpha mattes to extract foregrounds and composite them onto different

backgrounds, Xu et al. [6] created thousands of new composite images. They further

enhanced the dataset by introducing random augmentations to the image-trimap pairs,

such as random crops, flipping, and trimap dilation, to promote better algorithm gener-

alization. The new algorithm presented by Xu et al. marked a significant advancement in

image matting technology, overcoming the shortcomings of earlier algorithms that relied

heavily on low-level features and lacked high-level context.

Following this foundational work, other researchers built upon and researched on deep

learning-based image matting methods. Cai et al. [33] broke down the matting pipeline

into two sub-tasks: trimap adaptation and alpha matte estimation, achieving state-of-

the-art results. They first inferred global structural semantics on the input image to

modify the trimap, followed by alpha matte generation and propagation.

On another front, Lu et al. [34] introduced IndexNet, proposing indices-guided un-

pooling in the decoder as a better alternative to traditional upsampling. This new ap-

proach allowed for better retention of boundary details, outperforming DIM [6] using a

lighter MobileNetV2 backbone [35].

Forte and Pitié [36] introduced a low-cost modification in F,B, α (FBA) Matting,

allowing matting networks to predict foreground and background colors along with the

alpha matte. This method not only achieved state-of-the-art results but was also efficient

in terms of computational and memory costs.

Lastly, a notable study was done on trimap-based image matting techniques. In

this study, the methodology encompassed a comprehensive three-part process involving

segmentation, trimap generation, and matting. The segmentation phase utilized the

strengths of UNet and UNet++ models, both built upon the EfficientNet-B4 backbone

and pre-trained on the expansive ImageNet dataset. These models were later fine-tuned

with data from the P3M-10K dataset, which provided high-quality inferred ground truth

segmentation.
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Network
P3M-500-P P3M-500-NP

MSE MAD MSE MAD

DIM(Their, UNet) 0.012 0.016 0.013 0.018
DIM(Their, UNet++) 0.010 0.013 0.015 0.011
DIM(Their, UNet++, Fine-Tuned) 0.010 0.013 0.015 0.011
IndexNet(Their, UNet) 0.012 0.015 0.014 0.018
IndexNet(Their, UNet++) 0.009 0.013 0.011 0.015
FBA Matting(Their, UNet) 0.012 0.015 0.014 0.017
FBA Matting(Their, UNet++) 0.009 0.012 0.011 0.014

Table 3.1: Comparative Analysis of various Network Combinations for Image Matting.
This table is taken from [37].

In the trimap generation stage, an encoder-decoder network was trained on P3M-

10K’s precise ground truth trimaps. The matting phase was conducted using three

advanced models: DIM, FBA Matting, and IndexNet, each initially pre-trained on the

Adobe Deep Matting dataset. The FBA Matting model, in particular, received additional

optimizations to improve data augmentation, enhancing its performance.

The standout performance of the FBA Matting model when integrated with the

UNet++ segmentation network was evident, particularly in terms of the mean absolute

difference (MAD) metric on both P3M-500-P and P3M-500-NP benchmarks. This system

takes an image Is as an input in RH×W×3 and outputs the alpha matte αs in RH×W×1.

Trimap-Free methods

The progress of image matting entered a new phase with the development of trimap-free

methods. Earlier techniques relied heavily on trimaps —- additional inputs that were

made by users. To address this, researchers shifted their focus towards eliminating the

need for trimaps, which included exploring automated trimap generation [23, 38, 39].

One of the leading developments in trimap-free matting was made by Chen et al.

with their Semantic Human Matting (SHM) method [23]. They came up with a creative

way of using a semantic segmentation network to create a trimap automatically. After
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generating the trimap, they used another matting network to process it. The idea behind

using two networks was to get a wide understanding of the scene as well as capture fine

details. This approach helped in accurately figuring out the alpha matte, which is crucial

for accurate matting results.

Following a similar path, Zhang et al. [40] introduced the Late Fusion CNN for Digital

Matting (LF). They used a unique approach involving a single encoder that splits into

two separate decoders for foreground and background separation. The key innovation

of their method was how they combined the outputs from these decoders for aiming to

refine the alpha matte predictions. Their method demonstrated promising results on a

specialized benchmark for matting.

The evolution of trimap-free matting took a significant leap forward with the intro-

duction of innovative methods like Glance and Focus Matting (GFM) and P3M-Net by

Li et al. [41, 42] These methods stand out due to their multi-task frameworks and the

incorporation of privacy considerations during the training phase. The development of

new datasets, such as P3M-10k has been instrumental in enhancing the capability to

thoroughly evaluate and compare various matting techniques. This progress has opened

up more opportunities for detailed and reliable assessments in the field

This progression towards trimap-free image matting reflects the continuous effort in

the field to make user interaction simpler while either maintaining or enhancing the qual-

ity of matting results. Each advancement, whether it be in automated trimap generation

or fully trimap-free solutions, represents a significant step towards making image matting

more accessible and efficient.

3.3 Video Matting

The shift from focusing on image matting to video matting was a major change in the

field of computer vision, introducing new challenges and methodologies. This change
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happened by the added complexity of the temporal dimension in videos. Unlike image

matting, which deals with static scenes, video matting requires addressing the changing

scenes over time. This necessity led to the adaptation and development of new method-

ologies in video matting. In response to this shift, several notable research works came

out. These works concentrated on understanding and using the movement and continuity

in videos to improve matting techniques.

In the following sections, the discussion will center around the research developments

in the field of video matting and provide a complete overview of the progression from

traditional approaches to deep learning-based methods.

3.3.1 Traditional Methods

The journey into using temporal propagation for video matting started with an important

study by Apostoloff et al. [43] They brought a new perspective by using a Bayesian

approach, which was based on learned image priors. Their innovative method used a

Markov Random Field (MRF), a mathematical model, to understand the connections

between matting elements over time and across different frames in a video. This approach

was particularly effective in dealing with small movements in videos and achieved high-

quality results in video matting.

Following the foundational work in temporal propagation for video matting, Choi

et al. [44] made a significant contribution with their method that utilized multiple

frames to enhance matting results. Their approach integrated both spatial and temporal

information, aiming to achieve a more accurate and refined outcome in video matting.

This method represented a considerable step forward in effectively utilizing the temporal

continuity that is a natural aspect of videos.

The development of video matting techniques continued to evolve with the significant

work of Li et al. [45] They introduced a motion-aware approach in their study, specif-

ically designed to handle substantial motion in video sequences. Their methodology
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cleverly integrated motion information into the matting Laplacian, leading to improved

performance in videos characterized by noticeable motion.

In a similar vein, Lee et al. [46] made a noteworthy contribution with their research

on Temporally Coherent Video Matting. They addressed the issue of flickering around

the foreground boundaries, a common problem arising from determining alpha mattes

frame by frame. Their work underscored the importance of a more robust method that

ensures consistency over time in video matting.

3.3.2 Deep Learning-Based Methods

With the introduction of deep learning into video matting, the field has undergone a

significant transformation. This shift to deep learning-driven methods has resulted in

far more efficient and accurate techniques compared to traditional approaches. This

advancement has been possible due to improved computing power and the availability

of large datasets, which have enabled the training of more complex and refined models.

This transition highlights a major development in the field, leveraging deep learning’s

powerful capabilities to effectively tackle the challenges of video matting.

Trimap-Based methods

Zhang et al. [47] made notable strides in deep learning-based video matting by focusing

on achieving temporally coherent results . They developed an attention-based temporal

aggregation module to improve video matting networks. This module works by calculat-

ing temporal correlations for pixels in feature space, effectively addressing motion noises,

a major challenge in video matting. An innovative aspect of their work was introducing

a new loss term to train the attention weights, greatly enhancing video matting perfor-

mance. This loss term is crucial for guiding the learning of attention weights, making

the method more robust against common video matting challenges like compression arti-

facts, changes in appearance, and motion. They also approached the trimap generation
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issue by adjusting a top-notch video object segmentation network with a small number

of user-marked key frames. This technique efficiently created necessary trimaps for video

matting, reducing the manual effort typically needed for such annotations. Moreover,

they compiled an extensive video matting dataset consisting of 80 training and 28 val-

idation foreground video clips with accurate alpha mattes. This dataset fills a critical

gap in resources available for training and evaluating video matting methods, foster-

ing the development of new approaches. Their experimental results showed that their

method can produce high-quality alpha mattes, even in challenging situations, marking

an improvement in temporal coherence and overall video matting performance.

Lin et al. [48] then introduced a groundbreaking approach for real-time, high-resolution

human video matting. Their method uses a recurrent architecture, which is a significant

change from the typical frame-by-frame processing, effectively utilizing temporal infor-

mation. This approach not only improves temporal coherence and matting quality but is

also more efficient and faster. At the heart of this method is a feature-extraction encoder

inspired by the best semantic segmentation networks, using MobileNetV3-Large as its

main structure. The recurrent decoder, which includes ConvGRU at multiple scales, is

carefully chosen for its ability to handle both long-term and short-term temporal informa-

tion efficiently. The design of this decoder, with its bottleneck block, upsampling blocks,

and output block, effectively translates the final features into outputs that include alpha,

foreground, and segmentation predictions. Additionally, Johnson et al. proposed a dual

training strategy that focuses on both matting and semantic segmentation, aiming to

make the model more robust and reduce the overfitting problems that are common in

models trained on synthetic data. They also implemented the Deep Guided Filter (DGF)

[49], which is particularly useful for high-resolution videos like 4K and HD, ensuring top-

quality matting results.
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Trimap-Free methods

The field of real-time video matting underwent a significant change with the work of

Johnson et al. [50] and their innovative MODNet (Matting Objective Decomposition

Network). Breaking away from the traditional dependence on green screens for alpha

matte extraction, MODNet showcased the possibility of real-time portrait matting using

just a single input image. The brilliance of this system lies in its approach to break-

ing down the matting objective into smaller goals, which are then optimized together

through clear constraints. This aspect is particularly crucial in video matting, where

it’s important to keep consistency and accuracy across different frames. The use of the

Efficient Atrous Spatial Pyramid Pooling (e-ASPP) module in MODNet is a key factor

for combining features from different scales, essential for accurate semantic estimation

in video content. Furthermore, MODNet’s Self-Supervised Sub-Objectives Consistency

(SOC) strategy addresses the issue of domain shift, a common challenge in trimap-free

video matting methods, thus ensuring adaptability and effectiveness with real-world data.

Similarly, Sun et al. [51] made a substantial contribution to video matting by focusing

on deep learning techniques. Their framework introduced a Spatio-Temporal Feature Ag-

gregation Module (ST-FAM), skillful at producing alpha mattes that are coherent both

spatially and temporally. By extracting features at different levels and using information

from multiple frames without depending on optical flow, this module tackled key chal-

lenges in video matting: ensuring spatial and temporal coherence and minimizing the

need for detailed trimap annotations in each frame. Their innovative use of a correlation

layer to propagate trimaps across frames is a notable step towards reducing the need for

extensive user inputs, making the method more practical. Additionally, they provided

a comprehensive video matting dataset with ground truth alpha mattes, including 10

high-resolution real-world videos with dense human-annotated trimaps frame by frame.

This dataset is crucial for quantitative assessments. Their extensive evaluations showed

that their method significantly outperforms traditional image-based and video matting
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approaches, especially in complex situations with fast-moving objects or intricate back-

grounds.

Figure 3.7: An overview of the VMFormer Architecture. This figure is taken from
VMFormer[2].

Lastly, Li et al. [2] contributed VMFormer, an end to end video matting system. It

takes a video sequence I = {I1, I2, . . . , IT} in RT×H×W×3 as input, where T is the number

of frames. The output is the final prediction of alpha mattes α = {α1, α2, . . . , αT} in

RT×H×W×1. This model has two primary branches: the feature modeling branch and the

query modeling branch. The feature modeling branch integrates a CNN-based backbone

with a transformer encoder, adeptly extracting feature maps from the video sequences.

This encoder is built upon multiple blocks, each containing a self-attention layer and

a multi-layer perceptron. These components are crucial for achieving global modeling

across each frame of the video sequence.

The query modeling branch of VMFormer employs a transformer decoder, featuring a

cross-attention module. This module enables learnable queries to interact with the entire

feature sequences. The significance of this interaction lies in its capacity to facilitate these

queries in learning global representations, thereby enhancing the accuracy of alpha matte

predictions.
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For temporal aspects, VMFormer introduces two innovative modules: the Long-Range

Query-based Temporal Modeling (LQTM) and the Short-Range Feature-based Temporal

Modeling (SFTM). LQTM leverages self-attention mechanisms to apply temporal mod-

eling based on queries, efficiently learning temporal weights. SFTM, conversely, focuses

on short-range temporal modeling by recurrently aggregating successive feature maps.

In the final stage of the VMFormer model, alpha mattes are predicted by combining

the largest feature map with queries from the transformer decoder, utilizing batch matrix

multiplication. This final step is pivotal in generating the accurate and detailed alpha

mattes essential for video matting applications.

In this chapter, we reviewed a range of significant works in video matting, highlighting

the field’s progress and the challenges distinct to it, especially when compared to image

matting. One of the key challenges in video matting is dealing with temporal information

between frames, making these algorithms more complex and demanding in terms of

resources than those for static images.

In our research, we are exploring a novel approach that seeks to extend the principles

of image matting to video matting. Rather than developing new video matting algorithms

from scratch, our focus is on refining the alpha mattes generated by existing matting

systems.
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A New Approach to Solve Video

Matting

In this chapter will detail our methodology, concentrating on how we aim to improve the

initial alpha mattes generated by matting systems. We will discuss the integration of

advanced segmentation models and meta-learning techniques in our process.

4.1 Problem Statement

As we discussed earlier, video matting is a process where the goal is to separate an object

from its background in video frames. It involves calculating the transparency level of each

pixel in each frame of a video, known as an alpha matte, which is challenging but crucial

for creating realistic scenes.

Considering a video sequence denoted as I = {I1, I2, . . . , IT}, each frame Ii in this

sequence can be modeled as a composite of a foreground image Fi and a background

image Bi, merged using an alpha matte αi within the range [0, 1]:

Ii = αiFi + (1− αi)Bi, (4.1)

33
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Here, αi is the alpha matte for each frame. The objective of video matting is to accurately

predict the sequence of alpha mattes α = {α1, α2, . . . , αT} for all the frames. This task

is inherently challenging due to the under-constrained nature of the problem: for each

pixel, there are seven unknown variables - three from Fi, three from Bi, and one from αi

- compared to only three known values from the RGB color channels in Ii.

In our research, we aim to address the unique challenges of video matting by adopt-

ing an approach that extends the principles of image matting to the dynamic realm of

video sequences. This method is predicated on the concept of transfer learning, where

techniques successful in one domain are adapted and applied to another. Our primary

objective is to enhance the accuracy and quality of alpha mattes {α1, α2, . . . , αT} in video

matting, which are crucial in determining the realism and effectiveness of the final video

content. To achieve this, we introduce two concepts in our methodology: Adapters and

Backbones.

• Backbones: In this research, a backbone refers to the core algorithm or system

that initially processes the video frames to generate initial alpha mattes. In our

architecture design, the notation B is adopted to represent the backbone system.

• Adapters: To refine the output of the mentioned backbone system, we incorporate

adapters. An adapter in our research is a segmentation model. The role of an

adapter is to boost the quality of initial alpha mattes. In our architecture design,

the adapter is denoted as A.

4.2 Architecture Design

In this section, we will explore the architecture design that we chose for implementing

our approach.
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4.2.1 Boosting with Adapters (BwA)

In the Boosting with Adapters method, our video matting framework employs a two-

part system to refine alpha mattes and enhance the accuracy of video matting results. The

process begins with an input sequence that passes through a frozen backbone, denoted

as B. This backbone is tasked with generating an initial alpha matte, αt, from the input

frames It, It−1, It−2, . . . , It−l. The initial alpha matte represents the system’s preliminary

effort at distinguishing the foreground from the background in video frames.

Following the initial generation, both the alpha matte αt and the original input un-

dergo processing by an adapter A, which possesses trainable weights. The primary role

of this adapter is to learn from the deficiencies of the frozen backbone B in producing the

alpha matte. It fine-tunes its parameters specifically to address and correct these errors.

By adapting to the mistakes made by the backbone, the adapter refines the initial alpha

matte, outputting a more accurate and polished version.

In our approach, we intentionally avoid using a residual layer between the backbone B

and the adapter A. This configuration is critical as it prevents the backbone’s output from

potentially overpowering the adapter’s corrective actions, ensuring the adapter focuses

solely on addressing specific errors in the alpha matte independently. This methodological

choice significantly enhances the precision of the error correction process.

Managing the amount of temporal information processed is crucial to maintaining op-

timal model performance. Our system carefully balances this by incorporating an optimal

amount of temporal data to effectively capture motion dynamics without unnecessarily

complicating the matting process.

The rationale for freezing the backbone during the fine-tuning phase of the adapters

is to reduce computational demands. By keeping the backbone’s output consistent, we

prevent it from affecting the learning trajectory of the adapters, allowing them to refine

their performance based on a stable input consistently. This approach enhances sys-

tem efficiency, particularly in practical applications where computational resources are
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Figure 4.1: Workflow diagram highlighting the “Boosting with Adapters” approach,
where the backbone system remains frozen and the adapters are fine-tuned with the
purpose of alpha matte refinement. This figure demonstrates the process for both single
and multi-frame scenarios, showing how the initial alpha matte generated by the frozen
backbone, is subsequently refined by the fine-tuned adapters to produce the improved
alpha matte.

limited.

These strategic design choices ensure our system not only achieves high accuracy in

video matting but also remains efficient and adaptable, capable of handling the dynamic

and complex nature of video content with minimal computational resources.

4.2.2 Expert Selection

Following the initial refinement phase in the Boosting with Adapters approach, we

implement an Expert Selection phase. Given that adapters possess varying archi-

tectures, they exhibit different performances during the error correction process. To

effectively manage this variability and optimize the system performance, we employ a

subset of our training data, referred to as the selection data, for this phase.
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Figure 4.2: Diagram illustrating the Expert Selection phase. This figure shows the
process of fine-tuning multiple adapters on a subset of training data, evaluating their
performance based on specific metrics, and selecting the most effective adapters based
on their performance on unseen test data. The selected adapters are then designated
as expert adapters for subsequent phases, optimizing both computational resources and
matting accuracy.

Each adapter a1, a2, . . . , an is fine-tuned within the framework established by the

boosting process. after fine-tuning, these adapters are evaluated based on specific metrics,

which will be detailed later in this chapter. The evaluation is conducted on unseen test

data to ensure unbiased assessment of each adapter’s performance.

The purpose of this Expert Selection phase is to identify ‘expert adapters’ that

offer the most effective error correction for the given video matting task. This selection

process is crucial as it allows us to harness the strengths of specific adapters without

the need to deploy all within the operational environment, thus saving on computational

costs. By fine-tuning and selecting experts on just a portion of the dataset, we can

achieve significant efficiencies while maintaining high performance levels.
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4.2.3 Boosting using Ensemble (BuE)

With the expert adapters identified in the previous phase, we proceed to implement the

Boosting Using Ensemble approach. In this phase, the expert adapters A∗
1, A

∗
2, . . . , A

∗
n

are now frozen with their weights fine-tuned from the Expert Selection phase. This setup

ensures that the initial refinements each adapter learned are preserved and utilized in

the subsequent processing steps.

The process begins with the input video frames passing through the frozen backbone

B, which outputs an initial alpha matte. This alpha matte, along with the original input,

is then processed by each of the frozen, fine-tuned expert adapters. Each adapter outputs

its version of the refined alpha matte, reflecting its specialized adjustments.

Subsequently, these refined alpha mattes, together with the initial input, are fed into

an ensemble layer h with trainable weights. The role of the ensemble layer is critical: it

intelligently combines the outputs from each expert adapter. By learning the optimal way

to integrate these multiple refined alpha mattes, layer h effectively enhances the overall

matting result, pushing the accuracy and quality of the video matting even further.

The ensemble layer h can be designed in several ways, depending on the specific

requirements of the application and the characteristics of the data. Common choices for

the ensemble head include:

- Weighted Average: Where each expert’s output is assigned a weight that reflects

its relative importance, determined during the training process.

- Concatenate and Convolving: Where outputs from all experts are concatenated

and passed through convolutional layers to integrate information.

- Attention Mechanisms: Which dynamically adjust the focus on different expert

outputs depending on the input, allowing the model to adaptively prioritize more relevant

features.

These choices each offer unique advantages in terms of flexibility, adaptability, and

efficiency in integrating diverse expert opinions into a coherent output. Among the



Chapter 4. A New Approach to Solve Video Matting 39

options for designing the ensemble layer h, we opted for the Concatenate and Convolving

method. This approach involves concatenating the outputs from all expert adapters,

which are then processed through convolutional layers.

The concatenated output provides a comprehensive feature set that represents multi-

ple perspectives on the matting task, which the convolutional layers can effectively synthe-

size. This method leverages the spatial processing capabilities of convolutional networks,

making it possible to extract and refine features from combined inputs, thereby enhanc-

ing the overall matting accuracy. The convolutional layers act to distill and enhance the

relevant features from the concatenated outputs, ensuring that the final matting result

is both precise and robust to various video content challenges.

By using this design, our system gains the ability to effectively combine the strengths

of each adapter, leading to improved performance and greater adaptability in handling

complex video matting scenarios.

This ensemble approach leverages the strengths of multiple specialized adapters,

blending their individual corrections into a cohesive and superior alpha matte. The

decision to freeze the expert adapters’ parameters during the fine-tuning of the ensemble

layer is pivotal. It stabilizes the input to the ensemble layer, allowing it to focus solely

on learning how to effectively combine the expert outputs without the complexity of

changing individual adapter behaviors.

In addition, the number of expert adapters plays a crucial role in the efficiency and

effectiveness of the ensemble. Utilizing too few experts can limit the diversity of error

correction, potentially missing nuances in different video scenarios. Conversely, too many

experts can lead to excessive gradient computations during training, increasing the com-

plexity and computational cost of determining the relevance of each expert’s contribution.

This balance ensures that the ensemble method remains computationally efficient while

maximizing the quality of the video matting output.
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Figure 4.3: Diagram illustrating the “Boosting using Ensemble” method, where the
backbone system and the fine-tuned adapters are frozen. This figure shows the integration
of a convolutional neural network within our ensemble. The convolution head is crucial
for analyzing and combining the outputs from the expert models and the backbone,
leading to a sophisticated and refined final alpha matte for video frames.

4.3 Choices of Backbones

In our research, the selection of an appropriate matting system forms a crucial part of the

architecture. This system, known as the backbone, is tasked with generating the initial

alpha mattes, which are pivotal for our subsequent refinement process. The backbone

we choose needs to possess the capability to process RGB images or a sequence of video

frames, producing a grayscale alpha matte. A significant requirement for our chosen

backbone is its ability to function autonomously, without necessitating additional inputs

like a trimap, which is a common prerequisite in many matting systems. For the purpose

of our study, we have selected two specific backbones, each distinguished by its specialized

functionality:

• FBAUNET++ [37]: As we discussed in the related work, this system is primarily

an image matting system and its efficacy lies in handling static images, making it an
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excellent choice for scenarios where the primary focus is on single-frame processing.

Since our main focus is on applying image matting systems to video data and

expand from there, FBAUNET++ is a great base for our approaches.

• VMFormer [2]: While the main focus of our research is centered on adapting

image matting techniques to video data, we have strategically incorporated VM-

Former, a state-of-the-art video matting system, as another backbone for further

exploration. This choice is detailed in the related work section. Using this system

as our backbone allows us to investigate whether our methods can enhance even

the most advanced video matting systems. This aspect of the research is crucial in

assessing the potential of our methodologies to contribute improvements to existing

cutting-edge video matting technologies.

4.4 Choices of Adapters

In our video matting process, the adapters, chosen from a range of segmentation models,

play a crucial role beyond their traditional segmentation tasks. These adapters, integral

to our methodology, are specifically employed to refine alpha masks. The refinement

of alpha masks is a key step in enhancing the quality and accuracy of the alpha mattes

initially produced by our selected backbones. For our research, we have carefully selected

the following six segmentation models to serve as adapters, each offering unique capabil-

ities: FPN [27], PAN [25], DeepLabV3 [52], UNet [28], LinkNet [26], MANet [24]. It’s

important to note that all these adapters are built upon the ResNet50 [53] architecture,

utilizing its backbone structure with pre-trained ImageNet [54] weights.
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4.5 Evaluation Metrics

We measure our performance with four metrics: Mean Absolute Differences (MAD),

Mean Squared Errors (MSE), Gradient (GRAD), and Connectivity (CONN). MAD and

MSE are universally recognized metrics in both image and video matting evaluations,

providing a solid foundation for assessing the basic accuracy of the matting results.

However, for tasks involving motion, such as video matting, GRAD and CONN met-

rics are particularly crucial. These metrics are computed across multiple frames, rather

than on a single frame basis, which makes them indispensable for evaluating the overall

quality of the output video.

4.5.1 Mean Absolute Difference

The Mean Absolute Difference (MAD) is a statistical measure often used to quantify

the error between the computed alpha matte and its ground truth. MAD is particularly

useful for assessing the performance of matting algorithms as it provides a straightforward

and intuitive measure of the average magnitude of errors. The formula for MAD is:

MAD =
1

N

N∑
i=1

|αi − α∗
i |. (4.2)

Here, αi represents the alpha value of the ith pixel in the computed alpha matte, α∗
i is

the alpha value of the ith pixel in the ground truth, and N is the total number of pixels.

The absolute difference |αi − α∗
i | is summed over all pixels and then averaged.

A lower MAD indicates that on average, the computed alpha values closely match the

ground truth. This suggests that the matting algorithm is both accurate (close to the

true value) and precise (having less variability). Also , In the context of image composi-

tion, a lower MAD means that the transitions between foreground and background are

more seamlessly reproduced, leading to a more visually consistent and realistic composite

image.
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4.5.2 Mean Squared Error

Mean Squared Error (MSE) is another critical metric for evaluating the performance of

alpha matting algorithms. It measures the average of the squares of the errors between

the computed and ground truth alpha values, providing insight into the variance of the

errors. The MSE is defined as:

MSE =
1

N

N∑
i=1

(αi − α∗
i )

2. (4.3)

In this formula, like what we had in MAD, αi and α∗
i are the alpha values for the computed

and ground truth mattes at pixel i, respectively. The squared difference (αi − α∗
i )

2 is

then averaged over all N pixels.

MSE gives more weight to larger errors due to the squaring of the differences. This

means a lower MSE indicates not only general accuracy but also that there are no sig-

nificant errors in any part of the matte. In addition to this, in alpha matting, edges and

fine details are critical. A lower MSE value suggests that these areas are handled well,

with fewer large discrepancies in transparency levels.

4.5.3 Gradient

Next error metric is the gradient error [55] which quantifies the difference in the rate of

change in pixel intensities between the computed and ground truth alpha mattes. The

gradient error is given by the equation:

Gradient Error =
∑
i

(∇αi −∇α∗
i )

q, (4.4)

where i is the pixel index, ∇αi and ∇α∗
i are the normalized gradients of the computed

and ground truth alpha mattes at pixel i, respectively. The exponent q emphasizes larger

discrepancies. Lower gradient error values indicate a close match between the computed
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Figure 4.4: Connectivity error. This figure is taken from [55].

alpha matte and the ground truth. This close match ensures the accuracy of transitions

and edges, important for the visual integrity of composite images. A lower error reduces

visual mistakes, leading to a more realistic representation.

4.5.4 Connectivity

Lastly the concept of connectivity directly influences the quality of the output. Connec-

tivity refers to the way pixels with similar transparency levels are grouped or connected

in an image. The primary goal in evaluating connectivity is to ensure that the transition

between the foreground and background in an image is seamless and visually coherent. To

simplify the connectivity analysis, alpha mattes are often converted into binary images.

This process involves classifying pixels as either part of the foreground or the background

based on a predefined threshold. This binary representation makes it easier to evaluate

the connectivity of pixels. The connectivity error can be defined as:

Connectivity Error =
∑
i

(ϕ(αi,Ω)− ϕ(α∗
i ,Ω))

p. (4.5)

Here, αi is the transparency level of a pixel in the computed alpha matte, α∗
i is the

transparency level in the ground truth matte, and Ω represents a source region, typically

the largest contiguous opaque area. The function ϕ measures the degree of connectivity

for a pixel, and the exponent p is usually set to 2 to emphasize larger differences.

The connectivity measure ϕ for a pixel is determined based on the distance di = αi−li,
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where li is a threshold level that defines whether a pixel is connected to the source region

Ω. The formula for ϕ is:

ϕ(αi,Ω) = 1− (λi · δ(di ≥ θ) · di). (4.6)

In this expression, δ(di ≥ θ) is a function that ignores small variations in di below a

threshold θ, focusing on significant connectivity differences. λi is a weighting factor that

accounts for the average distance of disconnected pixels from Ω.

A lower connectivity error indicates that the alpha matte accurately represents the

connectedness of pixels, closely resembling the ground truth. This is crucial for ensuring

that the foreground and background are correctly segmented, leading to a more natural-

looking image. An image with a lower connectivity error has fewer disconnected regions.

This is especially important in maintaining the integrity of edges and transitions between

different regions in an image. In image compositing, where alpha mattes play a key role

in blending images, excellent connectivity ensures smooth and natural transitions.

By incorporating all four metrics, with a particular emphasis on GRAD and CONN,

our evaluation strategy addresses both the static accuracy of individual frames and the

dynamic integrity of the entire video sequence. This approach allows us to thoroughly

assess the effectiveness of our video matting techniques, ensuring high-quality results

across diverse video content.



Chapter 5

Experiments and Result

5.1 Datasets

In this section, we introduce the datasets that form the basis of our video matting

research. The selection of appropriate datasets is crucial for our study, and for this

purpose, we have chosen two datasets: VideoMatte240K[56] and BG-20k[57]. These

datasets provide a wide range of data necessary for the development and evaluation of

our video matting methods.

5.1.1 Datasets Overview

VideoMatte240K: The primary dataset for our video content is VideoMatte240K,

developed by Lin et al. This dataset comprises 484 green screen videos which have been

converted into 240,709 frames. Each frame includes a corresponding alpha matte and

foreground element. The majority of these frames are in 4K resolution, with a portion in

HD. The dataset encompasses a diverse array of human subjects, various clothing styles,

and a multitude of poses. This diversity is essential for testing the effectiveness and

adaptability of our video matting models across different scenarios.

46
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BG-20k: For background images, we utilized the BG-20k dataset provided by Li et

al. This dataset consists of 20,000 high-resolution images, carefully selected to ensure

the absence of dominant foreground objects. The diversity of the backgrounds, ranging

from natural settings to urban environments, is advantageous for creating synthetic test

scenarios. This allows for a comprehensive assessment of our matting models against a

variety of background conditions.

5.1.2 Background Shuffling

For each frame extracted from the VideoMatte240K dataset, we randomly assigned a

background from the BG-20k dataset. This meant that no two frames had the same

background, even if they originated from the same video clip. By doing this, we created

a training dataset where each frame presented a unique combination of foreground subject

and background scene.

The reason behind this approach was to encourage the model to focus more on the

foreground elements, irrespective of the background. In real-world scenarios, the back-

ground can vary significantly, and our model needs to reliably separate the foreground

from a different potential backgrounds. By training the model on frames with constantly

changing backgrounds, we aimed to reduce the model’s dependency on background fea-

tures and enhance its ability to isolate the foreground.

We anticipated that this method would lead to the development of a more robust

matting model. A model trained in such a diverse and unpredictable environment is

expected to perform more consistently and accurately, irrespective of the background

conditions in the input frames.

5.1.3 Dataset Categorization

For our study, we organized the datasets into two main categories, each serving a specific

purpose in our experiments. These are the ‘Initial Set’ and the ‘Extended Set’.
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Figure 5.1: Showcasing Background Shuffling in Dataset: This figure consists of four
frames from our dataset, illustrating the technique of background shuffling. Each frame
features the same foreground subject from one video, set against a different background.

Initial Set: For the initial stage of our experimental work, we utilized a dataset named

the ‘Initial Set’, comprising 1,000 frames. This set includes 200 frames from each of five

different videos. These videos were selected to encompass a wide variety of scenarios,

ensuring a diverse range of data for our analysis. The main purpose of using this set is

to conduct fine-tuning of our adapters. This phase was crucial in identifying the most

effective adapters, termed as ‘experts’, for use in our ensemble method, thereby laying

the groundwork for the subsequent stages of our research.

Extended Set: Our research also incorporates a more extensive dataset, known as the

’Extended Set’, which includes 10,000 frames. This dataset is composed of 100 frames

from each of 100 diverse videos from our dataset. The Extended Set, encompassing a

wide variety of human activities and scenarios, served as a robust platform for evaluating

the performance of our models on a more extensive scale.

5.2 Experimental Setup

The training process was conducted using images with a resolution of 480 x 640 pixels,

and the computations were performed on an NVIDIA V100 GPU. We utilized momentum

Stochastic Gradient Descent for updating the model parameters, with a learning rate set

at 0.0001. The training was done over 50 epochs, and to prevent overfitting, an early

stopping criterion was implemented, terminating the training if no improvement was

observed for 3 consecutive epochs. The batch size during training was maintained at 16,
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a size chosen to optimize the learning process within the computational constraints of

our setup. Additionally, we employed Dice Loss [58] as the loss function for the training,

aligning it with the specific requirements and objectives of our matting tasks.

5.3 Experiments and Result

In this section, we will explore our experiments with FBAUNet++ and VMFormer as our

backbone, focusing on refining video data matting. The experiments are structured in

stages, utilizing our approaches, Boosting with Adapters and Boosting using Ensemble.

We evaluated these methods using metrics such as MAD, MSE, GRAD, and CONN, to

assess the effectiveness of various adapters and training approaches.

5.3.1 FBAUNet++ as the Backbone

Following our motivation to apply image matting systems to video data, we selected

FBAUNet++ as our backbone for the first stage of our experiments. The first stage of

our experiments was centered around refining alpha mattes using our BwA approach.

We fine-tuned six different adapters with our initial training set. The primary objective

in this phase was to improve the quality of the alpha mattes and assess the capability of

each adapter in enhancing the matting output using this approach. After completing the

fine-tuning process, we evaluated the performance of all six adapters. This evaluation

was based on their effectiveness in refining alpha mattes and was conducted using an

unseen test set to ensure unbiased results.

Based on the results presented in Table 5.1, the integration of adapters with the

FBAUNet++ backbone generally enhances matting performance across several met-

rics—MAD, MSE, GRAD, and CONN. Notably, when utilizing two input frames, the

performance across all adapters improves significantly compared to configurations with

either one or four frames. This improvement indicates an optimal balance of temporal
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Method
#Input Frames MAD↓ MSE↓ GRAD↓ CONN↓

Backbone Adapter

FBAUNet++ None 1 33.95 33.76 11.83 11.17

FBAUNet++ FPN
1 35.45 31.04 20.91 9.88
2 13.18 8.77 13.15 3.04
4 33.31 28.89 25.75 9.26

FBAUNet++ Unet
1 22.45 18.04 13.51 5.89
2 15.45 10.04 11.15 3.34
4 22.08 17.67 14.92 5.78

FBAUNet++ PAN
1 51.12 46.71 23.87 14.67
2 17.27 12.86 14.47 4.28
4 31.66 27.25 30.18 8.75

FBAUNet++ MANet
1 33.15 28.74 17.65 9.15
2 23.87 19.46 13.53 6.33
4 39.85 33.64 31.49 12.74

FBAUNet++ LinkNet
1 30.48 26.07 15.49 8.35
2 17.92 13.51 13.87 4.53
4 65.49 61.08 22.91 19.25

FBAUNet++ DeepLabV3
1 19.77 15.36 15.98 5.05
2 16.08 11.67 14.43 3.93
4 31.48 27.07 27.34 8.71

Table 5.1: Effectiveness of BwA Approach in Matting Performance with FBAUNet++
Backbone and Various Adapters. This table compares the matting performance met-
rics – MAD, MSE, GRAD, and CONN – for various adapters incorporated within the
FBAUNet++ backbone using our BwA method. Performance is evaluated over 1, 2, and
4 input frames, with lower metric values indicating improved matting quality.

information, which is sufficient to capture relevant motion dynamics without introducing

excessive noise or complexity that could degrade the adapter’s performance.

The optimal performance with two frames suggests that while the base models are

designed to process single images, their capability in video matting can be substantially

improved by incorporating a moderate amount of temporal data. This supports the

decision to employ temporal information carefully in the video matting process, ensuring

enough context for effective matting without overwhelming the computational framework.

Moreover, the selection of FPN and UNet as expert adapters was based on their
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Method
Training Set MAD↓ MSE↓ GRAD↓ CONN↓

Backbone Adapter

FBAUNet++ None — 33.95 33.76 11.83 11.17

FBAUNet++ FPN
Initial 13.18 8.77 13.15 3.04

Extended 9.68 5.27 3.52 1.96

FBAUNet++ Unet
Initial 15.45 10.04 11.15 3.34

Extended 10.29 5.88 2.78 2.14

Table 5.2: Impact of Training Data Volume on Adapter Performance in the BwA ap-
proach. This table presents a comparison of FPN and UNet adapters’ performance on
the FBAUNet++ backbone, contrasting results with initial and extended training data
sets.

consistent superior performance in comparison to other adapters. These models not

only demonstrated the best matting quality but also showed robustness across different

metrics, validating their selection for further experiments. Setting the number of input

frames to two for subsequent tests was a strategic choice, derived from empirical evi-

dence of enhanced performance, ensuring that further evaluations and optimizations are

grounded in the most effective configuration observed.

Having selected our expert adapters, we moved on to the next phase of our experiment

with the aim of determining whether a larger volume of training data could further

enhance the performance of these experts. The results of this experiment, as detailed

in Table 5.2, clearly indicate a positive impact from the increased data volume on the

performance of our expert adapters. This improvement underscores the fact that a more

extensive dataset contributes significantly to the refinement process, ultimately leading

to enhanced matting accuracy.

In this phase of our research, we demonstrated the effectiveness of meta-learning

techniques in enhancing video matting performance through the implementation of an

ensemble method, specifically the BuE approach. By freezing the weights of our expert

adapters, which had been fine-tuned on an extended training set, we ensured that their

refined capabilities were fully leveraged. The crucial role was then assigned to the con-
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Method
MAD↓ MSE↓ GRAD↓ CONN↓

Type Backbone Adapter

Base FBAUNet++ None 33.95 33.76 11.83 11.17

BwA
FBAUNet++ FPN 9.68 5.27 3.52 1.96

FBAUNet++ UNet 10.29 5.88 2.78 2.14

BuE FBAUNet++ FPN + UNet 8.37 5.16 1.33 0.98

Table 5.3: Enhanced Matting Performance through BuE approach. The table presents a
comparison of matting performance metrics – MAD, MSE, GRAD, and CONN – high-
lighting the effectiveness of the ensemble technique.

volution head within our ensemble architecture. This component was responsible for

synthesizing the inputs from the frozen expert adapters and effectively determining the

final output of the ensemble system. This setup showcases the potential of meta-learning

to optimize video matting processes, highlighting the convolution head’s pivotal role in

refining and integrating the contributions of each adapter in the ensemble.

The results from the BuE approach, as detailed in Table 5.3, substantiate a significant

finding: the combined performance of the two expert adapters, FPN and UNet, within the

ensemble surpasses their individual performances. This outcome is particularly notable in

the metrics for Mean Absolute Difference (MAD), Mean Squared Error (MSE), Gradient

Magnitude Error (GRAD), and Connectivity Error (CONN), where the ensemble method

achieves the lowest values across all metrics.

5.3.2 VMFormer as the Backbone

For the final stage of our study, we aimed to test the universality and effectiveness of our

meta-learning approaches, namely Boosting with Adapters (BwA) and Boosting using

Ensemble (BuE), by implementing them with a different backbone, VMFormer. This

stage was crucial for demonstrating the flexibility of our methods and their capability to

enhance even advanced video matting systems like VMFormer.

The results from Table 5.4 demonstrate that while the Boosting using Ensemble
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Method
MAD↓ MSE↓ GRAD↓ CONN↓

Type Backbone Adapter

Base VMFormer None 6.39 1.51 1.05 0.41

BwA
VMFormer FPN 7.21 2.46 0.68 0.58

VMFormer UNet 7.14 2.53 0.59 0.57

BuE VMFormer FPN + UNet 6.51 2.18 0.57 0.39

Table 5.4: Performance Comparison of Base, BwA, and BuE Methods when VMFormer
is the Backbone. This table delineates the matting performance metrics – MAD, MSE,
GRAD, and CONN – for the VMFormer backbone using various approaches. The results
provide insights into the effectiveness of each method in refining the quality of video
matting.

method improved metrics such as GRAD and CONN, the gains in Mean Absolute Dif-

ference (MAD) and Mean Squared Error (MSE) were marginal. This is particularly

significant given that VMFormer is already optimized to minimize errors on these global

metrics, suggesting that our approaches encounter limitations in enhancing performance

where the baseline system exhibits minimal errors, particularly in very detailed aspects

of the matting process.

These findings highlight a critical limitation: our system struggles to further refine

performance in areas where errors are already reduced to very fine details, which are

less detectable and harder to correct. VMFormer’s state-of-the-art capabilities mean

that most significant errors have already been addressed, and the remaining inaccuracies

often occur in intricate details that are challenging to capture and improve upon further

with the current meta-learning strategies.

This limitation underscores the importance of developing new techniques or refining

existing ones that can address these minute details more effectively. It also highlights the

need for ongoing research into enhancing the adaptability and resolution of meta-learning

models, particularly in high-performance contexts where improvements require handling

subtleties that standard approaches may not adequately resolve.
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5.4 Qualitative Analysis

Transitioning from the quantitative results of our experiments, we now shift our focus to a

qualitative analysis, providing a more visual and intuitive understanding of our method-

ologies’ effectiveness. This section presents a series of figures that visually demonstrate

the alpha matte refinement process achieved through our different approaches.

Figure 5.2 shows the qualitative results of different adapters in the Boosting with

Adapters Approach using the FBAUNet++ backbone. This visualization helps in un-

derstanding the enhancements provided by various adapter configurations. Figure 5.3

illustrates the qualitative impact of the number of input frames on the Boosting with

Adapters Approach. The figure highlights how the input frame count affects the refine-

ment outcomes. Figure 5.4 demonstrates the impact of training data size on the Boosting

with Adapters Approach, specifically using the UNet with FBAUNet++ backbone. This

figure provides insights into the scalability and effectiveness of the approach with differ-

ent data volumes. Lastly, Figure 5.5 compares the Boosting with Adapters approach to

the Boosting using Ensemble Approaches. This comparison is crucial for understanding

the relative advantages and limitations of each method.
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Figure 5.2: Qualitative Results of Different Adapters in Boosting with Adapters Ap-
proach using FBAUNet++ Backbone: This figure provides a qualitative visualization of
the results achieved with various adapters as part of the ’Boosting with Adapters’ ap-
proach, complementing the FBAUNet++ backbone. Displayed from left to right in each
sub-figure are the previous frame, the current frame, the initial alpha matte produced
by FBAUNet++, the refined alpha matte by each adapter, and the ground truth alpha
matte. Arranged from top to bottom, the sub-figures offer a comparative qualitative
analysis of the adapters - FPN, UNet, PAN, MANet, LinkNet, and DeepLabV3.
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(a) 1 input frame

(b) 2 input frame

(c) 4 input frame

Figure 5.3: Qualitative Impact of Number of Input Frames on Boosting with Adapters
Approach. This figure presents the performance of BwA approach where the backbone
is FBAUNet++ and the adapter is FPN model for 1, 2, and 4 input frames. From left to
right, each sub-figure shows the last frame of the input sequence, the initial alpha matte
from FBAUNet++, the refined alpha by FPN, and the ground truth.

Figure 5.4: Impact of Training Data Size on Boosting with Adapters Approach: UNet
with FBAUNet++ Backbone. This figure provides a qualitative comparison of the UNet
adapter’s performance in the BwA approach, emphasizing how varying sizes of training
data influence matting quality. The top row illustrates the results of UNet fine-tuned
with the initial, smaller training set, while the bottom row shows its performance when
trained with the more extensive, extended set. In each sub-figure, displayed from left
to right, are the previous frame, the current frame, the initial alpha matte generated by
FBAUNet++, the refined alpha matte by UNet, and the ground truth alpha matte.
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Figure 5.5: Comparison of Boosting with Adapters and Boosting using Ensemble Ap-
proaches. This figure offers a side-by-side comparison showcasing the outcomes of the
BwA and BuE methods. The first row shows the results of the FPN adapter employed in
the BwA approach, while the second row shows the UNet adapter’s performance within
the same approach. The third row presents the results of the BuE approach, where both
FPN and UNet adapters are used in a frozen state as part of the ensemble. In each row,
from left to right, the sequence includes the previous frame, the current frame, the initial
alpha matte produced by the FBAUNet++ backbone, the refined alpha matte from the
respective approach, and the ground truth.



Chapter 6

Conclusion

6.1 Contributions

This thesis has made several contributions to the field of video matting, which are outlined

as follows:

• Adaptation of Image Matting to Video Contexts: We have successfully ex-

tended image matting techniques to video matting by applying principles of transfer

learning. This approach specifically addresses the dynamic complexities inherent

in video, such as motion and temporal continuity, enhancing the adaptability of

matting techniques to the unique challenges of video sequences.

• Development of Boosting with Adapters (BwA): Our research introduces a

novel boosting method that utilizes advanced segmentation models to refine alpha

mattes. This method significantly improves the accuracy and realism of video mat-

ting results by correcting the mistakes of the matting process, thereby producing

higher quality mattes.

• Development of Boosting using Ensemble (BuE): We developed an ensemble

method that combines the strengths of multiple fine-tuned adapters. This strat-
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egy not only enhances the overall quality of video matting but also increases the

robustness and effectiveness of the matting systems across varied video content.

• Multi-stage training In our approach, we designed a two-stage process to enhance

video matting. Initially, we fine-tuned adapters and selected the most effective

ones based on their performance. Subsequently, we froze these adapters’ weights

and trained an ensemble layer to intelligently combine their outputs, significantly

improving the overall quality of the matting results.

6.2 Limitations

While our research has advanced the field of video matting, it is not without limitations:

• The computational resources required for fine-tuning and training the models are

substantial, which may limit their applicability in resource-constrained environ-

ments.

• Our models have shown promising results on the datasets used; however, their

generalization across a broader range of video scenarios remains a challenge. This

includes varying conditions such as lighting, object complexity, and motion dynam-

ics.

• The complexity introduced by the ensemble method, although effective in enhancing

performance, requires careful management to maintain a balance between system

complexity and performance efficiency.

6.3 Future Work

Building on the groundwork laid by this thesis, several avenues for future research emerge:
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• Data Diversity: Enhancing model robustness and generalization by expanding the

diversity of training data to include more varied and challenging matting scenarios.

• Computational Efficiency: Optimizing the computational efficiency of our meth-

ods could broaden their applicability, particularly for real-time video matting ap-

plications.

• Ensemble Strategies: Investigating additional ensemble strategies and exploring

different combinations of adapters and backbones could further improve matting

performance.

• Real-world Applications: Applying and rigorously testing these models in real-

world video matting tasks will provide valuable insights into their practical effec-

tiveness and areas for improvement.
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