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ABSTRACT

Unlike surface surveillance, volumetric monitoring deals
with three-dimensional target space and moving objects within
it. In sky monitoring, objects fly within outdoor and often remote
volumes, such as wind farms and airport runways. Therefore,
multiple cameras should be implemented to monitor these
volumes and analyze flying activities.

Due to that, challenges in designing and deploying volu-
metric surveillance systems for these applications arise. These
include configuring the multi-camera node placement, cover-
age, cost, and the system’s ability to detect and position flying
objects.

The research in this dissertation focuses on three aspects
to optimize volumetric surveillance systems in sky monitoring
applications. First, the node placement and coverage should
be considered in accordance with the monitoring constraints.
Also, the node architecture should be configured to minimize
the design cost and maximize the coverage. Last, the system
should detect small flying objects with good accuracy.

Placing the multi-camera nodes in a hexagonal pattern
while allowing overlap between adjacent nodes optimizes the
placement. The inclusion of monitoring constraints like monitor-
ing altitude and detection pixel resolution influences the node
design. Furthermore, presented results show that modeling
the multi-camera nodes as a cylinder rather than a hemisphere
minimizes the cost of each node. The design exploration in this
thesis provides a method to minimize the node cost based on
defined design constraints. It also maximizes the coverage in
terms of the number of square meters per dollar.

Surveillance systems for sky monitoring should be able to
detect and position flying objects. Therefore, two new annotated
datasets were introduced that can be used for developing in-
flight birds detection methods. The datasets were collected
by Mid Sweden University at two locations in Denmark. A
YOLOv4-based model for birds detection in 4k grayscale videos
captured in wind farms is developed. The model overcomes
the problem of detecting small objects in dynamic background,
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Abstract

and it improves detection accuracy through tiling and temporal
information incorporation, compared to the standard YOLOv4
and background subtraction.
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SAMMANFATTNING

Till skillnad frén videoévervakning av ytor, behandlar voly-
metrisk 6vervakning féremal som rér sig inom en tredimensio-
nell volym. I till exempel vindkraftsparker och flygplatser finns
ett behov av 6vervakning av objekt i luften. Fér kunna 6vervaka
dessa omraden behovs flera kameror och analysmetoder for
att kunna detektera flygaktiviteter over hela volymerna. Uti-
fradn behovet att gé fran ytbaserad 6vervakning till volymetrisk
overvakning kommer ett antal utmaningar med optimering av
dessa 6vervakningssystem. Dessa inkluderar konfiguration av
nodplacering av flera kameror, 6vervakningstdckning, kostnad
och systemets férmaga att upptédcka och positionera flygande
objekt.

Den hir avhandlingen studerar tre delomraden for voly-
metriska dvervakningssystem. Forst studeras nodens placering
och tdckning i enlighet med krav for 6vervakningen. Dessutom
bor nodarkitekturen konfigureras for att minimera kostnad och
maximera tackningen. Sist bor systemet upptdcka sma flygande
féremél med god noggrannhet.

Avhandlingen visar att placeringen av multikameranoderna
i ett hexagonalt monster utifrdn krav pa 6vervakningen, s som
maximal hojd och nédvandig pixelupplosning, ger effektivaste
placeringen av kameranoder. Vidare presenteras resultat som
visar att modellera kameranoder som en cylinder snarare dn en
halvsfar minimera kostnaden for varje nod, vilket minimerar
kostnaden for tackningen av ett visst omrade.

Den tredje delen av avhandlingen studerar metoder for att
kunna uppticka flygande féremal. En YOLOv4-baserad modell
for att detektera faglari hogupplost videomaterial har utvecklats
utifradn tva annoterade datamédngder insamlade pa tva olika
vindkraftsparker i Danmark. Modellen 6vervinner problemet
med att uppticka sma féremal i en dynamisk bakgrund. Den
forbattrar detekteringsnoggrannheten jamfort med modeller
baserad pé standard YOLOvV4 och traditionell bildbehandling,
genom att dela upp bilden i delbilder samt inkludera temporal
information i modellen.
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— Chapter 1 —

INTRODUCTION

Advancement in smart cameras, image processing, and machine learn-
ing have improved surveillance systems drastically. However, this has
led to new challenges in optimizing the design and implementation of
these systems. Smart cameras are designed to perform specific, high
speed, and accuracy tasks, such as machine vision and surveillance,
[42]. In addition to capturing an image of the scene, smart cameras
perform computer vision and image processing tasks, such as object
detection, tracking, and segmentation. This is done through built-in
image processing algorithms in the camera processing unite to extract
information from images for later decision making, [39].

For complex vision applications, such as volumetric surveillance,
multiple cameras should be integrated to monitor a volume. The target
space, in this case, is three-dimensional with moving objects. The
objects are then detected or positioned depending on the application
requirement. Unlike area surveillance, where objects are bounded
to a surface, objects move within three-dimensional (3D) space in
volumetric surveillance. One specific volumetric surveillance problem
is sky monitoring, such as wind farms, airport runways, or border
control surveillance.

Deployment and operating costs of monitoring systems in large
volumes can be challenging if not properly investigated at the design
stage. Issues like the node architecture, pixel resolution at a given
distance, and coverage should be well defined during that stage.
Multi-camera systems in volumetric surveillance provide coverage
across a wide area, ensuring the object’s visibility for detecting and
tracking. Deployment of multiple cameras system may include grid or
dome topology, [24]. The grid topology, shown in Fig 1.1 (left) divides
the monitored volume into segments covered by fixed nodes with a
specified field of view (FoV). The drawback of this placement is that it
requires a high number of nodes and consequently high deployment
and maintenance costs.

On the other hand, the dome topology, Fig 1.1 (right), groups
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Chapter 1. Introduction

Figure 1.1: (left) Grid and, (right) Dome topology.

number of cameras such that their field of views forms a hemisphere
around its center. This design reduces the number of visual sensor
nodes required to monitor a given volume and reduces implementa-
tion and maintenance costs.

To develop a vision system for sky monitoring, flying objects
should be detected and localized. Therefore, in order to cost opti-
mize a volumetric surveillance system, three main aspects should be
considered. The multi-camera node architecture, its placement, and
the system’s ability to detect and position flying objects within the
volume should be investigated.

1.1 Problem Formulation/Motivation

Traditional sky surveillance systems like radar systems [29] [40] are
expensive and complex to deploy in large open volumes like in sky
monitoring. For example, researchers in [45] concluded that radar
systems designed to monitor polar activities in the higher altitude
of the sky require constant changes in operating frequencies and
elevation angles in order to maintain constant detection of the polar
activity. Furthermore, the use of four radar systems to monitor birds’
nightly migration patterns in southern Sweden was investigated in
[33]. The BirdScan radar was classified as a low altitude system to be
used in applications such as collision risks with man-made structures.
The maximum detection range for small birds under short-pulse
of this radar does not exceed 800 meters. The data collected from
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1.2. Research Objectives

radar systems are often inconclusive when flying object size becomes
smaller and when many objects interact.

Another challenge in sky monitoring is that the monitored volume
is often large and remote. For example, in onshore wind farms, the
distance between turbines is normally five times the rotor diameters in
order to avoid the turbulence effect [49]. So for a 500 kW wind turbine,
the distance among them in a farm is 250 meters and 410 meters for a
2.5 MW turbine. Clearly, wind farm facilities require a massive piece
of land. Surveillance systems implemented in confined spaces are not
scalable for such application. Therefore, arranging multiple cameras
in one node that covers a 27 radian around its center, Fig. 1.2, is one
way to address reducing the deployment cost over the large volume.

Furthermore, wind farms installations often interfere with birds’
migration paths where it can lead to their collision with the turbine
blades [43]. It is estimated that up to 500,000 birds collide with wind
turbines per year in the U.S. [48]. Therefore, there is a need to capture
the impact of wind farms on birds” habitats and their migration
patterns. The surveillance system’s ability to correctly detect and
position flying birds around turbines can influence the design of
collision avoidance systems in wind farms, [2] [3]. Also, accurate birds
characterization and counting are required in order to predict birds
migration changes [1].

Therefore, surveillance systems for sky monitoring applications
should consider the challenges of having big and often remote volumes.
The background in these applications is mostly dynamic in terms
of clouds movement and illumination variation. Also, the system
requirements of pixel resolution and its ability to detect small flying
objects should be considered.

1.2 Research Objectives

The main goal of this dissertation is to optimize volumetric surveil-
lance systems to enable sky monitoring. This includes optimizing
the multi-camera node placement, configuration, and object detec-
tion. This leads to the following three research questions and their
contributions:
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(a) Top view (b) Side view

Figure 1.2: Multi-camera dome coverage.

1.2.1  Optimizing Multi-camera Dome Placement and Coverage Evaluation

e R.Q.1 How can the multi-camera dome placement be optimized
to ensure full coverage while fulfilling detection requirements
of objects flying within the volume?

Optimize Multi-camera Dome Placement Most of the work conducted in
the literature to optimize camera coverage and placement considers
limited indoor areas. Monitoring a volume includes freely moving
objects at a specific altitude within it. This makes many of the camera
placement and coverage strategies in area monitoring inapplicable for
such applications. For example, extending optimal 2D placement, such
as the art gallery and sphere packing, leads to NP-Hard complexity
in three-dimensional deployment [36].

Contribution: In [Paper2], an optimized placement method of the
multi-camera domes in 3D environments is developed. The goal is
to reduce the number of nodes implemented while achieving full
coverage at a specified flying altitude. Objects flying within the
hemisphere are detected when the requirement for pixel resolution
is fulfilled. The domes are modeled in the volume by adapting the
hexagonal packing of circles. The evaluation method in [Paper1] is
used to assess different placement configurations.
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1.2.2. Configuring the Multi-camera Dome Design

Evaluate Multi-camera Dome Coverage Node placement in designing mon-
itoring systems determines the size and shape of its coverage. In
volumetric surveillance, three-dimensional coverage of the space is
required. This means the altitude at which objects are flying should
be considered. A method to measure node coverage effectiveness in
volumetric surveillance is necessary.

Contribution: The developed method in [Paperl] measures the
degree to which a system fulfills its monitoring objectives. The analysis
is based on three criteria, detection, positioning, and pixel resolution
to detect the object. The method is tested using GPS data of flying
birds, and it can be used to evaluate dome placement algorithms for
volumetric monitoring systems.

1.2.2  Configuring the Multi-camera Dome Design

e R.Q.2 From a set of camera sensors and objective lenses, how
to configure the design of the multi-camera dome, subjected
to the defined monitoring constraints? and how can its cost be
optimized?

Design Exploration of the Muiti-camera Dome The choice of cameras sensor
and lens and their deployment affects the design cost, the accuracy
of the monitoring system, and the ability to position objects. The
node design with respect to camera sensors and lenses and the trade-
offs between design constraints and monitoring objectives should be
investigated. The defined set of constraints includes the volume to be
monitored, the number of cameras that can be integrated in a node,
and pixel resolution at a given distance.

Contribution: A design exploration method was developed in
[Paper3] for optimizing the cost of a multi-camera dome. The design
exploration minimizes a defined cost function and is subjected to
constraints, such as pixel resolution and the number of cameras in
the node. Analyzing trade-offs among the design constraints allow,
for example, increasing coverage for a given cost.

Cost Optimization of the Multi-camera Dome In sky surveillance, objects fly
within the 3D volume. The flying altitude should be considered when

page | 5



Chapter 1. Introduction

the node design is configured. Volumes above the defined flying
altitude are not required to be covered, which counts as a coverage
overhead. Also, the altitude constraints the overlapping areas between
adjacent domes. Therefore the multi-camera dome can be redesigned.

Contribution: In [Paper4] a cost-optimized design for the multi-
camera dome that maximizes its coverage is developed. The proposed
design is cost-optimized per node and provides more coverage as
compared to the hemispherical multi-camera dome. The comparison
is made based on the cost per node and number of covered square
meters per dollar.

1.2.3  Improve Flying Objects Detection Accuracy

e R.Q.3 For the problem of sky monitoring, how to detect small
flying objects?

Object Detection  Object detection in sky surveillance can be challenging
due to having small flying objects in a large volume and constantly
changing background, which requires high-resolution frames. For
example, detecting birds flying in wind farms to prevent their collision
with the wind turbines. Object detection methods are either traditional
computer vision-based or deep learning-based.

Contribution: The performance of traditional computer vision
algorithm against deep neural networks for the problem of detecting
flying birds around wind turbines was investigated in [Paper5]. A
YOLOvV4 based model that uses tiling and temporal features of 4k
video frames was proposed. The model’s validation and testing
accuracy were improved compared to the standard YOLOv4 and
background subtraction. Since deep learning requires big datasets
for training, validation, and testing, two datasets collected by Mid
Sweden University in Denmark for that purpose were introduced in
[Datasets].

Moreover, the deep learning-based detection model can be used
to build a multiple object tracker and construct object trajectory in 3D.
This will be further investigated as future work.
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1.3. Dissertation Outline

1.3 Dissertation Outline

The next chapters are organized as follows. Chapter 2 has the imple-
mented literature investigated and studied in depth. The theoretical
aspect of volumetric surveillance, multi-camera dome, and camera
calibration is discussed. In addition, deep learning-based object de-
tection is reviewed. Chapter 3 introduces the methodology used to
investigate each of the research questions in terms of optimizing the
multi-camera node placement and configuration. It also presents
the datasets used to develop the object detection models. Chapter 4
explains and discusses the research findings in relation to the research
objectives. Last, chapter 5 summarises the conclusion of this work
and the next step forward to continue as future work.

1.4 Authors Contributions

The following table is the authors contribution for each publication
included in the thesis:

H. A. - Hiba Alqaysi

N. L. - Najeem Lawal

L. F. - Igor Fedorov

B. T. - Benny Thunberg

E. Z. Q. - Faisal Qureshi

M. O’N. - Mattias O'Nils
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— Chapter 2 —

THEORY

This chapter introduces the theoretical base for the work done in
the thesis. The concept of volumetric surveillance is presented, with
relation to the multi-camera dome. Overlapping between domes
means the possibility to position objects, therefore, camera calibration
and object positioning is discussed. Lastly, object detection using deep
learning methods is reviewed.

2.1 Volumetric Surveillance

Triple integrals can be used to calculate a volume [46]. If it is assumed
that a camera is placed at the origin of a spherical coordinate system,
as shown in Fig. 2.1, and that its coverage radius is r, where the
pixel resolution requirement, 6, is met. Then the maximum (ideal)
volume,V, the camera monitors can be calculated using triple integrals
as:

3

V= 2%Fovh . cosn_TFOVU
where FoV), and FoV; are the camera’s horizontal and vertical angles
of view, respectively. The coverage radius, r, that fulfills the minimum
resolution constraint, 6, pixels per meter of a volume at that distance
can be expressed as:

(2.1)

_ _Dn
~6-FoVy
where P, is the number of pixels horizontally in the camera sensor.
Therefore, the maximum number of square meters surveilled at height
h for a specific camera sensor and objective lens combination will be:
2P} n—FoV,
A(h) = TR PoVﬁ cos > (2.3)
This is an ideal volume calculation that in order to fully monitor a
volume it requires multiple cameras to hoover in the middle, which
is unrealistic for most applications. However, it sets a baseline when
analyzing methods for implementing volumetric surveillance.

r (2.2)
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Chapter 2. Theory

Figure 2.1: Covered volume of a camera.

2.1.1  Multi-camera Dome

A multi-camera dome composes of several cameras that are integrated
into one node and are not necessarily of the same type. The cameras
are arranged such that a hemisphere around the dome center is
monitored. Each camera is a combination of a sensor and an objective
lens. Because each camera-lens combination forms a discrete FoV,
multiple cameras are arranged to cover a 27t radian view, Fig. 2.2.
Cameras’ FoV are set up with minimum overlaps to ensure full
coverage and avoid the blind spots in the covered volume. The multi-
camera dome is introduced in the literature, [25], [7], as an efficient
implementation for volumetric surveillance.

The dome architecture results in two cost reduction aspects,
compared to the grid deployment of cameras :
1) Multiple cameras are combined in one node to surveil a volume
with a minimum overlap between them.
2) The cost of deployment, C, is reduced since several cameras are
integrated into one node.

n
C:cd+ch

i=1

Where ¢, is the deployment cost of one node and the sum of c, is the
cost of n camera sensors that compose the node. The deployment cost

page | 10



2.1.1. Multi-camera Dome
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Figure 2.2: Intersecting FoVs between multi-camera domes.

is the same for all the cameras in a node instead of having to deploy
each camera separately.

The dome capacity, DC, as defined in [25], is obtained from the
dome coverage radius, r, multiplied by the minimum pixel resolution,
p, required for detection at that distance. For example, if the coverage
radius of the dome is 500 meters and the required minimum detection
resolution is 10 pixels at 500 meters, then the dome capacity is 5000
pixels. Therefore it can be defined as:

DC=rxp (2.4)

where 7 is the coverage radius of the dome and p is the pixel resolution
required for detection.

Fully monitoring large open volumes requires implementing more
than one camera dome. When the coverage of adjacent nodes overlaps
as in Fig. 2.2, then it is possible to extract objects” position in 3D. The
cameras however should be calibrated in order to do that.
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Chapter 2. Theory

2.2 Camera Calibration

The process of estimating the camera parameters is called camera
calibration [17]. These parameters are extrinsic, intrinsic, and dis-
tortion coefficients. To estimate the camera parameters, 3D world
points and their corresponding 2D image points should be known.
The correspondences can be obtained using multiple images of a
calibration pattern, such as a checkerboard, [34].

Extrinsic parameters define the location and orientation of the
camera in the 3D world in terms of rotation and translation. Intrinsics
are the internal parameters of the camera that are used to map between
camera coordinates and pixel coordinates in the image frame, and
vice versa. They include the focal length in the x- and y-axis and
the principal point coordinates in pixels. The ideal pinhole camera
model in theory does not have a lens, so it means there is no lens
distortion. Therefore the parameters for the pinhole camera model
are represented in the following matrix:

P = K[R|t] (2.5)

where R is the rotation matrix and ¢ is the translation vector, the two
combined represent the extrinsic matrix; and K is described as:

fx 0 ¢y
K=|0 fy Cy (2.6)
0O 0 1

where f; and f, are the focal length of the camera in the x-axis and
the y-axis respectively, (cy, ¢y) is coordinates of the camera’s principal
point. K is called camera calibration matrix.

2.3 Object Positioning

There are three coordinate systems in the forward projection model
that transforms a 3D world point into a 2D image point. The co-
ordinates are world, camera, and image. The 3D world points are
transformed to 3D camera coordinates using the extrinsic parameters.
That is rotation and translation. Then camera coordinates are mapped
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2.4. Object Detection

into the image 2D plane using the intrinsic parameters. The transfor-
mation between 3D world points and 2D image points is calculated
using the following projection matrix:

x = PX 2.7)

The 3D position of an object can be obtained through back-
projection of the image points to the world, given the cameras are
calibrated. A point is back-projected to the world as a ray. The inter-
section of the two rays corresponding to the same point from the two
camera frames represents the object position in 3D, [Paper6].

2.4 Object Detection

A challenging object detection problem is sky surveillance where
flying objects in a volume should be accurately detected. This may
include monitoring airports runways, wind farms, or drones activities.
Object sizes are normally small in a large open volume and the
background changes in terms of illumination and clouds movement.
Object detection combines classifying (assigning class labels) and
localizing (identifying location) objects of interest in an image [53].
For decades, the main tool for the problem of object detection has
been the traditional computer vision algorithms. These well-known
algorithms include background subtraction, thresholding, salient
detection, etc. Such algorithms rely on handcrafted features, such as
corners, shapes, and colors which have to be identified by a human.
Therefore the performance of computer vision algorithms depends
on how accurately the features were identified and extracted.

As deep learning and the use of Convolutional Neural Networks
(CNNs) emerged, [26], different architectures were introduced for
object detection. Models were able to learn more complex features
and predict objects with higher accuracy. Deep learning replaced
handcrafted features with efficient algorithms for unsupervised or
supervised feature learning and extraction [9], [44], [5], as opposed to
doing that manually. However, it requires massive datasets in order
to train, validate, and test models effectively and high computational
power.
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2.4.1 Convolutional Neural Networks

The architecture of CNNs is different than the standard Neural
Network. In Neural Networks, an input vector goes through a series
of hidden layers [13]. Every layer consists of a set of neurons, and is
fully connected to all neurons in the next layer. These layers are called
fully connected layers. The last fully-connected layer in the network
is the one that makes the predictions.

Convolutional Neural Networks are different in the way neurons
are connected. The neurons in one layer are not connected to all the
neurons in the next layer, which decreases the number of parameters
in the layer. These layers are called convolutional layers, and a CNN
may have one or more convolutional layers [13]. For image analysis
such as feature extraction, CNNs have proven big success when it
comes to accuracy. Images are passed to the network as a matrix of
width, height, and depth so its spatial structure and pixel connectivity
are preserved [27]. The depth of an image is the color channels. For
example, an RGB image has a depth of 3, and a greyscale image has a
depth of 1. Layers in CNN can be organised in 3 dimensions: width,
height,and depth.

The building block of CNN is the convolutional layers [28]. These
layers detect patterns in an image by applying convolution of a
learnable filter (kernel) with the image pixels. When the input image
is an RGB image with three channels, the filters should also be 3D.
Convolution is the dot product of the filter and the corresponding
spatial pixels. As a result, the network learns low-level features such
as edges and lines in early layers then a high-level representation of
the object such as faces in deeper layers. This reduces the tasks of
developing feature extractors.

2.4.2 Deep Learning based Object Detectors

Deep learning-based object detectors can be one of two categories: one-
or two-stage detectors [22]. Tow-stage detectors generate predictions
based on region proposals from selective search in the first stage. The
selective search creates candidate bounding boxes that are then fed
to a CNN for feature extraction and classification as a second stage
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[11], [16]. Region-based Convolutional Neural Network detectors
such as R-CNN, Fast R-CNN, Faster R-CNN, and Mask R-CNN are
two-stage models [52]. Models from the R-CNN family have high
accuracy, for example, Faster R-CNN and R-FCN achieved mean
Average Precision (mAP) of 73.8% and 77.6% on the PASCAL VOC
2012 dataset, respectively [21], [8]. However, they are time-consuming
because of the large number of region proposals. In the first R-CNN,
2000 region proposals per image are created and forwarded to the
CNN [15].

On the other hand, single-stage detectors such as YOLO (You Only
Look Once), SSD (Single Shot MultiBox Detector), and RetinaNet
treat the object detection as a regression problem. This means the
algorithm learns the bounding boxes coordinates and class probability
in an input image directly without region proposals. Thus, they are
time efficient and can be used for real-time. YOLOv3 achieves an
accuracy of 57.9% on PASCAL VOC 2012 for resolution of 544 x 544,
[38], using Darknet-53 backbone, [10]. While SSD is faster than YOLO,
it is more suitable for detecting large objects and it performs badly in
detecting small objects. The multi-scale detection that was presented
in YOLOvV3 improves its accuracy in detecting small objects. There is
always a trade-off between accuracy and speed in all these detectors,
the right detector depends on the application requirements.

Small Objects Detection In object detection literature, objects are consid-
ered small when their mean relative overlap, which is the overlap area
between the object bounding box and the image, is between 0.08% to
0.58%, respectively [6]. When objects are in the range of 10% - 20%
of the image, then SSD gives better results than different versions
of YOLO [35]. If objects are less than 10% of the image, then YOLO
performs better than SSD.

Single-stage detectors can run in real-time as they are much
faster in inference compared to two-stage detectors. If the application
target is a balance of accuracy and speed, YOLO is the choice [32].
YOLOvV2 does not work well with small objects, on the other hand,
YOLOv3 develops a deeper network with 53 layers (Darknet-53) which
improves detecting small objects.
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YOLO The YOLO family models (v1, 2, 3) are end-to-end deep learning
models developed by J. Redmon etal. for object detection [37]. This
architecture divides an input image into s X s grid cells and applies a
single forward pass to the neural network. Each grid cell predicts B
bounding boxes and their confidence score C, which represents the
probability of that box contains an object. Next, each cell also predicts a
class probability of the object. Multiple bounding boxes are predicted
for the same object, they get thresholded by the confidence score.
Each cell is responsible for detecting one object in the image, where
its center falls into. Each bounding box consists of the 5 components:
(x,y,w, h,confidence) where (x,y) coordinates represent the center
of the box, (w,h) are its height and width. The output prediction is a
tensoras: S XS X (Bx5+ C).

Unlike YOLOv2 which predicts the output at the last layer, YOLOvV3
predicts boxes at 3 different scales in order to detect objects of various
sizes. This is done by downsampling the dimensions of the input
image by 32, 16, and 8 respectively. For example, an input image of
size 416 x 416 gets downsampled into grids of 13 X 13, 26 X 26, and
52 x 52.

YOLOv4 improves the accuracy by 10% compared to YOLOV3,
using the MS COCO dataset, [4]. YOLOv4 comprises of a backbone
network, a neck network, and a head network. It uses the novel
CSPDarknet-53 as the backbone network which enhances the learning
capability. Darknet-53 is 53 convolutional layers deep and uses Spatial
Pyramid Pooling (SPP) for feature extraction [19]. Path Aggregation
Network (PANet) serves as the neck network [30]. It collects features
from different layers of the backbone network. YOLOvV3 is used as the
head network for YOLOv4.

YOLO detectors deploy the concept of anchor boxes. These boxes
are estimated using K-mean clustering. The ground truth bounding
boxes in the training dataset is classified into nine clusters. Each
detection scale is assigned three anchor sizes for large, medium, and
small objects. Every grid cell predicts three boxes using these three
anchors. This means having a total of 10,647 predictions for each
input image ((13 X 13 X 3) + (26 X 26 X 3) + (52 X 52 X 3)).

The predicted boxes are thresholded first using the confidence
threshold, C. Then, the intersection over union (IoU) with the ground
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truth bounding box is calculated. If the IoU is greater than the IoU
threshold, the anchor box should detect the object for the learning
process otherwise it does not learn from that example. Therefore,
anchors are important parameters to tweak based on the object sizes
in the annotated training dataset.

2.4.3 Detection Evaluation

To determine whether a prediction is correct or not, Intersection over
Union (IoU) is used. It is defined as the ratio of the overlap between
the predicted and ground truth bounding box to the union of the two
boxes. The objectness (confidence) score is the network’s confidence
that an object exists in the given box. A prediction is a True Positive
(TP) if its objectness score is greater than or equal to some confidence
threshold, the predicted class matches the class of the ground truth,
and the IoU with ground truth is greater than or equal to the defined
IoU threshold. A prediction is a False Positive (FP) if either of the
latter two conditions is not true.

The most common evaluation metric used for the deep learning
model is mean Average Precision (mAP) [20]. Specifically, the Pascal
VOC 2010-2012 [14], which samples a curve at all precision and
recall values. The mAP is then calculated as the exact area under the
precision-recall curve (AUC).

Precision is the percentage of TF among all predictions, and recall
is the percentage of TF among the ground truths. The mAP metric in
the Pascal VOC 2010-2012 interpolates all the points to calculate the
AUC of the precision-recall curve. By default, the IoU threshold in
this calculation is 0.5. Mathematically,

Precision = L
"~ TP +FP

TP
Recall = 75 FN

where FP and FN are false positives and false negatives, respectively.
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METHODOLOGY

This chapter discusses the implemented methods used to conduct
the research. This includes the dome placement and coverage in a
volume. Also, a design exploration method that minimizes its cost is
introduced. The placement and monitoring requirements influence
changes to the node design. The coverage can be modeled as a
cylinder instead of a hemisphere to achieve maximum coverage per
cost. Moreover, in-flight objects detection methods are investigated
and implemented using two new annotated datasets.

3.1 Node Placement

The work conducted to optimize the multi-camera dome placement
included optimizing its placement in order to achieve full coverage,
[Paper2]. In addition, developing a method to evaluate node place-
ment in terms of detection, positioning, and maximum pixel resolution
captured to detect flying objects within the volume [Paper1].

3.1.1  Placement Optimization

The combined FOVs of the cameras in the dome form a hemisphere
whose base is a circle. Domes are assumed to have the same coverage
radius, r. Packing circles in 2D could be in a square or hexagonal
pattern. Hexagonal tiling is the optimal form and it is 12% more dense
[41], [12]. However, circles placed in this pattern do not intersect,
which means having areas that are not monitored. In order to cover
these areas, domes coverage should overlap. Arranging circles in a
thinnest hexagonal pattern allow overlap to fully cover a Euclidean 2D
plane and minimize the overlapping size, [23].

This placement provides full coverage on the ground level. How-
ever, in 3D volume, intersection points of every three adjacent non-
collinear domes are blind spots with zero coverage at the flying altitude
as shown in Fig. 3.2a. Therefore, domes should be re-positioned in
order to provide full coverage at the defined altitude. Fig. 3.1 shows
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Figure 3.1: Flying altitude.

that the flying altitude a can be used to calculate the distance by
which does centers should be re-positioned, 4.

In the thinnest hexagonal placement, every three adjacent non-
collinear domes form an equilateral triangle. Its side, s, is the distance
between the centers of the two adjacent domes, Fig. 3.2a. That distance
equals to 2+4/(r2) — (h?) and its altitude, ¢, equals to % X S.

In order to cover the blind spots while keeping the thinnest
hexagonal pattern, the altitude ¢t should be reduced by d in Fig. 3.1.
Therefore, the new triangle side, s’, which represents the distance
between domes center is equal to:

s’ =s—2d/\3 (3.1)

Re-positioning the domes ensures full coverage of the volume at
altitude a4, including intersection points as shown in Fig. 3.2b. It also
changes the minimum overlapping height, /1, between adjacent domes
that ensure 100% detection at flying altitude a. This height can be
calculated as the apothem of the equilateral triangle, which equals to:

h=t/3 (3.2)

3.1.2  Placement Evaluation
The optimized placement method discussed in Sec. 3.1.1 ensures 100%
detection for objects flying within the defined altitude when their

pixel resolution is equal to or greater than the required detection
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(a) Thinnest covering with blind spots (b) Full coverage placement

Figure 3.2: Hexagonal placement of camera domes.

resolution. Overlapping coverage between camera domes allows
extracting object stereoscopic information such as size and position.
These criteria should be measured in order to assess the multi-camera
placement.

The method developed in [Paperl] evaluates the coverage effec-
tiveness of each dome placement in volumetric surveillance. Three
monitoring objectives are defined and measured using GPS trajecto-
ries of six birds over an area of 9 km?. The tracks are obtained from the
work in [18]. The defined criteria are detection and positioning per-
centage of the flying object; as well as the maximum pixel resolution
captured to detect it.

The required minimum detection resolution and the dome cover-
age radius define the dome capacity as in Eq. 2.4. Each track composes
of a number of samples representing the coordinates in longitude and
latitude, and the altitude is assumed to be 200 meters for all tracks.
These coordinates are converted to a Euclidean distance-vector corre-
sponding to each track. The dome capacity is then used to calculate
the pixel resolution of each sample in the distance vector.

Detection percentage, is calculated for each tack when its pixel
resolution is higher than the required detection resolution. The
defined resolution is 3 pixels per meter (pix/m). Whenever this
resolution is fulfilled for the object flying over any of the domes, it
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means the object is detected. The placement method in 3.1.1 ensures
100% detection for the six used trajectories over the defined 9 km?
volume. Also, when the object is detected in two domes, its position
can be extracted. The positioning percentage measures that when the
birds fly within overlapping areas. Moreover, the pixel resolution to
detect the object changes as it flies closer or further to the dome center.
The maximum pixel resolution gives an indication of that.

3.2 Node Configuration

Optimizing the surveillance system includes the node design config-
uration at its core. To achieve that, two factors are considered; the
cost of the multi-camera dome, [Paper3], and its design, [Paper4].

3.2.1  Node Design Exploration

The multi-camera dome is assumed to consist of multiple layers verti-
cally, and each layer consists of a number of cameras at the horizontal
level as in Fig. 3.3. The design exploration in [Paper3] constructs a
cost-efficient camera dome, subject to monitoring constraints, from
a set of camera sensors and lenses combination. The combined hori-
zontal angles of the cameras in one layer should cover a minimum
of 360°. The vertical angles of all the layers combined should cover
a minimum of 90° to ensure monitoring a 27 radian view. Cameras
in one layer are identical; however, it is not necessary that all layers
have similar cameras.

For the design exploration, a number of constraints are defined.
They include the dome coverage radius, r, the minimum pixel res-
olution at that distance, and the number of layers in the node. The
method searches through available sensors and lenses to combine
them such that the diameter of the covering lens must be equal to
or larger than the sensor size. Then, an exhaustive search algorithm
is performed using the short-listed combinations. Each sensor-lens
pair should fulfill pixel resolution constraints at the specified dome
radius. The solution with the minimum cost is chosen as optimal.
The search for an optimal solution can be constrained by cost, the
number of cameras, or other parameters. The optimal solution has
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100

Z-axis (m)

Figure 3.3: Multi-camera dome architecture.

the following properties, the angle covered by all the layers vertically,
the total number of cameras in the node, the number of cameras in
each layer, and the solution cost.

The method estimates the cost of each member, S;;,;, of the solution
space, S, subject to the defined design constraints. The objective
function for the design exploration can be defined as minimizing the
following cost function:

minimize f(S)

Ctjn
subjectto df < d;’,
Mijn < M, (3.3)
N <L,
5rijn > 6/

Tt

where dl? and d}’ are the diameter of the sensor and the covering lens,
respectively, M;j, is the number of cameras required by the solution.
Ajj is the total vertical angle covered by all layers, N, and 6,;;,, is the
pixel resolution in the optical plane of the FoV for the combination of
camera i and lens j at a distance r from the dome for each layer 7 in
the solution.
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Figure 3.4: Coverage of multi-camera domes in hexagonal placement.

3.2.2  Node Cost Optimization

The placement method in Sec. 3.1.1 motivates the inclusion of the
placement in the node design. In the hexagonal placement, domes
overlap in order to achieve full coverage. Volumes above the monitor-
ing height are not required to be monitored. This results in coverage
overhead as shown in Fig. 3.4a. Coverage of each dome without
overlapping volumes in the hexagonal pattern can be modeled as a
hexagon that has a coverage radius of 7jexagon, Fig. 3.4b.

Taking these points into consideration leads to node design
changes to minimize coverage overhead in the hexagonal placement.
Therefore, in [Paper4] the hemispherical design of the node is opti-
mized accordingly. The monitored volume for each dome is modeled
as a cylinder instead of a hemisphere, Fig. 3.5b. Non-overlapping
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volumes have a minimum coverage radius equals the monitoring
height. Overlapping volumes coverage radius is be bounded by the
cylinder radius, r.. The resulting cylindrical dome is then divided
into layers, and each of them has its coverage radius. Monitoring
requirements should be met at that distance. At the top layer, cam-
eras are stacked with multiple overlaps at the horizontal level. This
also causes coverage overhead. Therefore, only one camera can be
mounted at the top layer, Fig. 3.5a. That layer can be considered as a
half layer when arranging the layers vertically from the bottom up to
cover a minimum of 90°. The minimum coverage radius of each layer
is defined based on the monitoring height, h.

rc/cos(ca), ifx & y <h.
'L =1\"m, ifx>h & y<h. (3.4)
h/sin(pa), ifx & y> h.

where x and y are height of the current and previous layer respectively,
as shown in Fig. 3.5b for layer 2. c4 is the covered vertical angle of
the current and previous layers. p 4 is the vertical angle of view of the
previous layer. The vertical angle of view for each layer is calculated
as:

va = 2arctan(d, /2f) (3.5)

where d, is the sensor’s vertical dimension and f is the lens focal
length. Each layer’s height is calculated as:

hy = |rm.sin(ca)l (3.6)

3.3 Object Detection

For the problem of sky monitoring in wind farms, object detection
is an essential surveillance task. To investigate methods for in-flight
birds detection, the performance of state of the are deep learning
YOLOV4, [4], is compared to computer vision-based detection using
background subtraction. An improved YOLO-based model is devel-
oped in [Paper5], and it achieves detection accuracy on testing sets of
90% and 92% using the datasets in [Datasets].
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Figure 3.5: (a) Camera’s field of view in 3D, (b) Optimized cylindrical dome design with
one camera on the top layer.

3.3.1 Deep Learning based Object Detection

Dataset Acquisition  Object detection using deep learning requires an-
notated datasets for training, validation, and testing. There were no
available datasets for in-flight birds that could be used for this study.
Therefore, datasets were collected by Mid Sweden University in two
wind farms in Denmark over a few months in 2017 and 2018. The
datasets were manually annotated using the open-source annotation
tool Labellmg, [47].

The Skagen dataset was collected at the Skagen Grey Lighthouse
Center of Migratory Birds using a pair of wide-angle monochrome
cameras fixed inside rigid boxes. The cameras were connected to
Nvidia Jetson TX2 edge-computing device recording 4K images at
5 fps. This dataset has a relatively stationary background in terms
of clouds movement and illumination, shown in Fig. 3.6 (left). The
majority of objects sizes in the Skagen dataset are less than 200 pixels,
Fig. 3.7a, which are considered very small. This dataset was used
mainly to test the deep learning models rather than for training.

The second annotated dataset is Kilm, and it was collected at Klim
Fjordeholme using the same camera setup; except here the cameras
were mounted on tripods. This dataset exhibits a more dynamic
background of moving clouds and variant illumination, Fig. 3.6
(middle). Objects sizes vary in this dataset as shown in Fig. 3.7b,
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Figure 3.6: (left) Frames from Skagen dataset, (middle) from Klim dataset, and (right)
examples of birds from both datasets with the corresponding pixels count for each box.
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Figure 3.7: Bird size statistics of (a) Skagen and (b) Klim datasets.

which makes it a good option for training and validation.

YOLOv4-based Models  Model 1 takes the full 4K frame as input and pass
it to YOLOvV4 network. The input frames get resized to the network
width and height of 1024 x 1024. The model is trained on the Klim
dataset. Objects in this dataset are small objects as shown in Fig. 3.7.
Therefore, Model 1 performed poorly detecting small birds and had a
high rate of False Negatives. This happens because frames get resized
into the specified width and height of the network architecture during
training, 1024 X 1024. When objects are already small and the frame
gets resized, pixels information get lost, and as a result, the model
does not learn from these examples and consequently does not detect

page | 27



Chapter 3. Methodology

Model 1

Model 2

t Temporal stacking  Tiling

Figure 3.8: Three YOLOv4 based models, each trained on the Klim dataset, for birds
detection around wind farms.

them during inference. In Fig. 3.8, this model is referred to as Model
1.

To address the problem of small objects in 4k resolution, Model 2
splits the input frames into four frames of 1920 x 1080 before feeding
them to the network, Fig. 3.8. The frames are then resized to the
network width and height of 1024 x 1024. This model was trained also
using the Klim dataset and it detects small birds better than Model 1.
It is assumed that birds at the tiling boundaries are rare and that they
do not stay long at these areas of the frame.

Frames in the Klim dataset that is used for training are extracted
from a video sequence. This means that temporal information from
successive frames is connected. Incorporating temporal in addition
to the spatial information of objects across multiple frames allows the
network to learn objects more accurately and differentiate them from
noise since objects will appear in successive frames. Frames in both
datasets are 24-bit grayscale, such that each pixel has three channels
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Table 3.1: Training parameters for Model 1, 2 and 3.

Model 1 Model 2 Model 3
burnin 100 400 400

steps (1600, 1800) (1400, 1700) (1400, 1700)

scales (0.1,0.1) (0.1, 0.01) (0.1,0.01)

anchors  (4,5) (67) 99) (814) (58 (711) (11,13) (5,8 (711) (11,14)
(
(

(14,12) (15,20) (24,25) (13,18) (20,18) (20,29) (15,17) (21,20) (19,31)
(32,46) (74,121) 33,27) (50,47) (60,98)  (32,27) (48,46) (61,97)

R, G, and B. For each frame at time ¢, Model 3 uses R and B channels
to store pixel values of the object in the previous and next frame at
time t — 1 and t + 1, respectively, before feeding it to the model for
training. Model 3 also uses tiling similar to Model 2. Therefore, given
3 4K images, four 1920 x 1080 X 3 tiles are constructed. Each of them is
then resized to 1024 x 1024 X 3 and passed into the YOLOv4 network.
Utilizing temporal features in Model 3 is shown in 3.8.

Training Parameters  Transfer learning was used to train the three mod-
els using the custom Klim dataset. Training starts using YOLOv4
weights pre-trained on the MS COCO dataset. The used weights
file is yolov4.conv.137, which freezes the wights up to convolutional
layer number 137, one layer before the first YOLO layer, and train the
rest of the layers using the custom dataset. The models were trained
using Google Colab Pro cloud services, alternating between Tesla
P100-PCIE and V100-SXM2 16GB GPUs

The network configuration includes number of hyperparameters.
A grid search is performed to find optimal values for the following
parameters: batch size, subdivision, network resolution, learning
rates, and anchors. These parameters are set set as: batch size: 64,
sub-division: 32, height and width: 1024, momentum: 0.949, learning
rate: 0.001, decay: 0.0005, and max batch: 2000. As the dataset has
only one class, the number of filters before each of the three YOLO
layers is set to 18. The hyperparameters for each model are defined in
Table 3.1.
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RESULTS AND DISCUSSION

4.1 Coverage Evaluation and Node Placement

The placement method in [Paper2] contributes to R.Q.1, which is
optimizing the multi-camera dome placement. The method is based
on placing the domes in a hexagonal thinnest covering. Then, it is
optimized as presented in Sec. 3.1.1. The monitoring objectives of full
coverage and 100% detection of flying objects when their altitude is
less than or equal to the predefined altitude and their pixel resolution
is equal to or greater than the defined detection resolution are satisfied.

To evaluate the placement, the defined method in [Paper1] mea-
sures pixel resolution, detection, and positioning percentage. The
method is tested using tracks of flying birds using GPS-data loggers,
fixed on the birds” backs. Track samples are the coordinates of bird
locations. The corresponding pixel resolution vector for samples in
each track is calculated using the dome capacity from Eq. 2.4. The
detection percentage for each track represents the number of samples
that have pixel resolution equal to or higher than p. This gives a
measure of how good a specific combination of node placement and
camera dome configuration is for detection. The positioning vector
for each track indicates if a sample point is detected by more than one
dome. This means that the bird is flying within coverage overlapping
areas. The pixel resolution varies at each distance from the dome’s
center and when the bird is at the same point but at different altitudes.
Therefore, the method calculates the pixel resolution captured for the
samples in each track.

Fig.4.1a shows the pixel resolution plot for six tracks when their
samples are detected by one dome. The defined minimum resolution
is 3 pix/m and the dome radius is 1 km. It shows that it is possible to
have pixel resolution up to 25 pix/m for Path 6 and that many paths
can be analyzed simultaneously. Fig. 4.1b shows the pixel resolution
plot of Path 3 when it is within the coverage of randomly placed 3
domes of the same capacity. Where the plots overlap, is where the
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Figure 4.1: (a) Pixel resolution plot for six bird paths, covered by one camera dome of
3000 pixels capacity, (b) Pixel resolution plot of Path 3, covered by 3 domes of the same
capacity.

object can be positioned.

The optimized hexagonal placement method in Sec. 3.1.1 was
introduced to address R.Q.1. Different configurations are tested using
that placement and the evaluation method. Configuration 1 has a
dome radius of 1 km, minimum pixel resolution is 3 pix/m, flying
altitude of 200 m, and the area required to be monitored is 3 x 3 km?2.
Seven domes should be placed in a hexagonal pattern to ensure full
coverage. Distance between domes centers calculated using Eq. 3.1 is
equal to 1937 m. Moreover, to ensure 100% detection of objects flying
at 200 m, the domes should intersect at a minimum height of 559 m.

In configuration 2 has the dome radius is 550 m, and the rest of the
monitoring constraints are similar to configuration 1. Twenty domes
should be deployed to fully cover the area. Distance between domes
centers in the hexagonal pattern is equal to 980 m. Domes should
intersect at a minimum height of 283 m, calculated using Eq. 3.2.
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Table 4.1: Coverage evaluation of configuration 2, detection is 100% at both altitudes.

Track 200 m altitude 100 m altitude
Positioning  Max. Pixel Resolution | Positioning Max. Pixel Resolution
(%) (pix/m) (%) (pix/m)

1 33.14 29.98 69.66 59.88
2 23.81 29.13 36.03 57.05
3 28.34 29.90 39.03 59.26
4 21.73 20.18 97.71 24.83
5 9.65 19.76 57.97 24.06
6 25.05 29.99 38.04 59.94

Table 4.1, shows the evaluation results of the placement from
configuration 2 when birds are flying at 200 and 100 m respectively.
Both pixel resolution and positioning percentage are higher for the
lower altitude, this is because birds stay longer in the overlapping
regions between domes. This motivates changes to the design of the
node itself as it is discussed in the next section.

4.2 Node Design Exploration and Cost Optimization

To configure the design of the multi-camera dome, the design explo-
ration in [Paper3] that addresses the first part of R.Q.2 is presented.
Given the constraints of the number of layers in a node, pixel reso-
lution, and dome radius, the solution can be optimized for the cost
or number of cameras. The pixel resolution multiplied by the dome
radius indicates the dome capacity. An example of design exploration
for a 3-layers dome is presented in Table 4.2. The design is constrained
to 3 layers, maximum of 40 cameras, and is explored for dome capacity
between 5000 and 9000 to cover 27t radian view. The trend in the table
is that larger node capacity generates more costly solutions. This is
because a large capacity requires a higher number of cameras. On the
other hand, there is no correlation between the number of cameras
and cost. A higher number of cameras can in some cases generate
lower node cost, for example when the capacity is 5400 in the table.
The table also shows that it is not possible to implement 9000 pixels
capacity dome with less than 40 cameras.
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Table 4.2: Sample results for a 3-layers dome design.

Capacity Cost Camera selected per layer Number of cameras per layer Total

(Pixels) (%) layer 1 layer2 layer3 layer1l layer2 layer3 cameras
5000 3114 25 25 25 7 6 3 16

5200 3392 36 23 23 10 6 3 19

5400 3586 36 23 23 11 6 3 20

5600 3660 36 25 45 11 6 2 19

5800 3698 25 25 25 8 7 4 19

6000 4845 34 34 49 16 12 2 30

7000 6916 58 58 58 14 12 7 33

8000 7964 58 58 58 16 14 8 38

9000 NaN NaN NaN NaN NaN NaN  NaN NaN

The dome capacity can be used to to explore the impact of design
constraints triad-offs on node cost. For example, Fig. 4.2 shows that it
is possible to design a dome of 3000 pixels capacity at a cost of US$
2,000 from the available camera-lens list. This solution requires 10
cameras organized into 2 layers, Fig. 4.2b. This means that a dome
with pixel resolution ,p, of 30, 50, 60 or 100 pixels/m and radius, r, of
100, 60, 50 or 30 m respectively can be designed with US$ 2,000. This
makes it possible to maximize the capacity of a monitoring system for
a given budget. The figure also shows that for a camera dome with
capacity range between 3500 to 6000 pixels, it is possible to design a
3-layers node with the same cost and number of cameras.

As it was introduced in Sec. 3.2.2, the hemispherical dome design
can be cost-optimized if its coverage is modeled as a cylinder, Fig. 3.5b.
In addition to the node cost, the coverage cost is also investigated.
That is the number of square meters covered per dollar (m?/$) when
placing the node in the hexagonal pattern. This cost analysis addresses
the second part of R.Q.2.

Using the placement method in [Paper2] and the design explo-
ration in [Paper3] to estimate the node cost, node, and coverage cost
comparison for the hemispherical and cylindrical designs is conducted.
The node cost of multiple configurations is calculated assuming a
required detection resolution of 10 pix/m and testing monitoring
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Figure 4.2: Unconstrained solution space exploration, bubbles size represent the number
of layers.

radii of 100, 200, 300, 400, and 500 m at different heights. In Table 4.3,
the optimized cost per node, $,,, is calculated along with the radius, 7,
that provides this cost. The configurations are for both hemispherical
and cylindrical designs with 1.5, 2, 2.5, and 3 layers. Results in the
table show that the new cylindrical design is cheaper per node than
the hemispherical at all heights when the number of layers is 2.5 and
3. Whereas when the node 1.5 and 2 layers, the hemisphere design is
cheaper but has less monitoring radius than the cylindrical. Moreover,
the concept of half a layer cuts down the number of cameras on the
top layer and hence reduces the cost of the node. For example, the
cost of a 2.5 layers node is less compared to a 3 layers node in both
designs.

When nodes are placed in the hexagonal pattern, Fig. 3.4b, the
radius that provides full coverage, r,¢xagon, is different than the defined
noderadius. Thatradiusis used to measure the coverage cost, Ccoverage-
The coverage cost for the node is calculated as:

Ccoverage = (7%3xaga,1n)/$n 4.1)

where $,, is the optimized cost of the node and 7j,exqg0n is its placement
radius in the hexagonal placement. Fig. 4.3 illustrates coverage cost
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Table 4.3: Node cost and monitoring radius for maximum coverage.

Height
50 | 100 | 200 | 300 | 400

i | $n fm_| $n rm | $a rm | $n Tim

Layers

Hemisohere desi 15 1404 300 1404 300 1404 300 20975 400 NaN NaN
emisphere design 2 2056 300 2056 300 2056 300 28487 500 28487 500
25 3975 500 3975 500 3975 500 3975 500 3975 500
3 5227 500 5227 500 5227 500 5227 500 5227 500

15 3083 500 3905 500 1400 300 20975 400 NaN NaN
2 2949 500 2949 500 3363 500 22666 400 28487 500

25 3402 500 3402 500 3402 500 3975 500 3975 500
3 3502 500 3502 500 3920 500 5147 500 5227 500

Cylinder design

400 400

Cost [m?/$]

Coverage Cost [m2/$]

S 0
50 100 150 200 250 300 350 400
Height [m]

re 2.5-Layers.
-Layers

(@) (b)

Figure 4.3: Coverage cost for eight configurations when monitoring radius is (a) 500 m
and (b) 400 m.

for the eight configurations in Table 4.3, when the monitoring radius
is 500 and 400 m, respectively. High coverage cost indicates a higher
number of square meters covered per dollar. The figure shows that
at 200 m height, 2 layers cylindrical node is the optimal design to
implement for both radii. For monitoring heights between 200 and
400 m, the optimal solution is a cylindrical node of 2.5 layers when the
radius is 500 m. whereas when it is 400 m the optimal configuration
is a cylindrical node of 2.5 layers for a height range of 200-235 m, and
3 layers cylindrical node for 236-300 m. Moreover, 2.5 layers node is
the optimal solution at all heights for the hemispherical dome.
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Figure 4.4: Results of background subtraction for bird detection. (left) Detection result
for a frame from Skagen dataset, (middle) ground truth bird bounding boxes of a frame
from Klim dataset, and (right) its detection result.

4.3 Object Detection

For the problem of in-flight birds detection, deep learning-based
models are compared against background subtraction in [Paper5]
using two custom datasets, [Datasets], to address R.Q.3. First, the
background subtraction is tested using the Skagen dataset. It achieved
precision and recall values of 84% and 60%, respectively. However, that
method performed very badly on the Klim dataset. Skagen dataset
exhibits a relatively static background, whereas the Klim dataset
exhibits a highly dynamic background due to clouds movement and
changes in illumination, as shown in Fig. 3.6. This suggests that
background subtraction-based bird detection is unable to deal with
settings where birds are viewed against a dynamic background. Fig.
4.4 highlights the failure of the background subtraction method on a
frame from the Klim dataset with a large number of false positives,
Fig. 4.4 (right). Note that this model does well on the frame from the
Skagen dataset, Fig. 4.4 (left).

Model 1 is trained using 4K frames from the Klim dataset. The
dataset includes 1607 objects for training, 340 for validation, and
357 for testing. This model achieved a mAP score of 83.7% on the
validation set. The default objectness score (confidence score) that
all predicted boxes are thresholded by is 0.25. Objectness score is the
network’s confidence that an object exists in a given box. The testing
mAP score for Model 1 is 82.9% on the unseen frames.

Model 2 splits the 4K images into four 1920 x 1080. These images
are subsequently resized to 1024 x 1024 and fed into YOLOv4. For
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Table 4.4: AP5q and mAP scores for Model 1, 2 and 3 on the Klim dataset. Here M1, M2,
and M3 refer to Models 1, 2 and 3, respectively.

Training/Validation/Test ~ APs (%) mAP (%) APsg (%) mAP(%)

set (Validation) (Validation) (Test) (Test)
M1 1607 /340/357 83.6 83.7 82.4 82.9
M2 1120/266/231 82.5 82.8 88.4 88.7
M3 1108/258/223 77.9 78.1 89.6 90.1

Model 2, 1120 objects were used for training, 260 for validation, and
231 for testing. This model achieved a mAP score of 88.7% on the
unseen testing data. Model 3 used temporal information stacking
across frames to improve bird detection accuracy. Model 3 achieved
mAP score of 90% on the test data. This is 2% improvement over
Model 2 and 8% improvement over Model 1. Results for Model 1, 2,
and 3 are summarized in Table 4.4. The table also shows the accuracy
using COCO’s APsp, which is very close to the mAP results of VOC
2010-2012 for the three models.

Model 3 achieves better mAP values as compared to those achieved
by the other three approaches: background subtraction-based method,
Model 1, and Model 2. For the Klim test dataset of 330 birds, Model
3 was able to correctly detect 315 birds. Furthermore, for 156 birds
between the sizes of 36 to 200 pixels, 145 were correctly detected. In
other words, Model 3 was able to correctly detect 93% of the birds
in the smallest category on the Klim test dataset, Fig. 4.5(right). In
addition, Model 3 only missed eight birds in the Skagen test dataset,
Fig. 4.5(left).

Table 4.5 summarizes testing mAP values forbackground subtraction-
based method, Model 1, and Model 3 from both Skagen and Klim
datasets. Note that neither Model 1 nor Model 3 were trained on the
Skagen dataset. Background subtraction based bird detection method
achieved mAP value of 71% on the Skagen dataset; however, this
method performed poorly on the Klim dataset. Model 1 achieved
mAP value of 60% on Skagen and 82% on the Klim dataset. This
model was not trained on the Skagen dataset. Model 3 performed the
best out of the three. This model achieved mAP values of 92% and
90% on Skagen and Klim testing datasets, respectively. The model
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Figure 4.5: Size and number of ground truth and true detected objects using Model 3 for
Klim and Skagen testing datasets.

Table 4.5: Testing accuracy using computer vision and deep learning.

mAP (%) Klim Skagen
Background subtraction <1% 71%

Model 1 82 60

Model 3 90 92

was never trained on the Skagen dataset and yet it achieved a very
good testing result of 92%.
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— Chapter 5 —

CONCLUSION & FUTURE WORK

In order to optimize volumetric surveillance for sky monitoring,
different aspects should be considered. Challenges in sky monitoring
applications include that the volume is open and often remote, such
as wind farms and airport runways. Also, objects fly in unpredicted
patterns with complex backgrounds. Therefore, extending 2D area
surveillance algorithms to 3D volume surveillance is inapplicable.
Arranging multiple cameras in one node reduces the deployment and
maintenance cost. This node architecture covers 27 radian hemisphere
and is known as the multi-camera dome.

The inclusion of monitoring constraints like monitoring height
and pixel resolution influences the node design. As a result, the node
coverage is modeled as a cylinder rather than a hemisphere. This also
optimizes the coverage cost in terms of the number of square meters
per dollar. The design exploration in this thesis provides a method
to minimize the node cost based on the defined design constraints.
In addition, the proposed CNN-based model improves flying object
detection compared to the standard YOLOv4 and background sub-
traction. This is achieved through tiling and temporal information
incorporation.

The work in this thesis presents an optimized implementation of
volumetric surveillance for sky monitoring. This includes constructing
a cost-efficient multi-camera node, its placement in a volume, and
detecting small flying objects. As will be explained in Sec. 5.0.2, object
positioning can be simplified using the object detection model.

5.0.1 Environmental and Ethical Impact

The conducted research aims to optimize surveillance systems in
sky monitoring. The considered application in the thesis and the
published papers is monitoring volumes around wind turbines in
wind farms. According to the Swedish Wind Energy Association, it is
projected that wind power generation will increase to 90 TWh in 2040.
This is part of the Swedish Energy Association plan of renewable
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power expansion that wind power will be the source for over half of
the electricity consumption in Sweden [51].

As presented in Ch. 1, it is estimated that up to 500,000 birds
collide with wind turbines per year. With the expansion of these
facilities, their impact on birds” habitat and their migration patterns
should be investigated. Deploying a surveillance system that is able
to detect, track, and count birds around wind turbines could be
used in collision avoidance. This reduces the fatality rate of birds’
collisions with the turbine blades. Also, it can be used when deciding
appropriate locations for wind farms.

The measurements in [Paper6] and [Paper5] were conducted
in two places in Denmark. The prototypes were deployed in Klim
Fjerritslev, a wind farm of Vattenfall power company, [50], and in Skagen
Grey Lighthouse at the Center for Migratory Birds in Denmark. The
experiments were conducted after obtaining the proper authorizations
inboth sites. Hours of raw video footage were collected in these remote
sites. However, if a person passed within the FoV of the cameras, that
was removed from the footage by any chance.

5.0.2 Future Work

The CNN-based object detector can be used to obtain object trajectory
through implementing a multiple object tracker (MOT), [31], on top of
it. The 2D image points of the track are mapped to camera coordinates
using the matrix in Eq. 2.6. Then the points of each track can be
back-projected into the world as a surface. When the surfaces back-
projected from two calibrated cameras intersect, the intersection curve
represents the object trajectory in 3D. These measurements will be
investigated in the future.
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