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Abstract: This paper investigates the integration of ConvNeXt—a convolutional architecture inspired by vision trans-
formers—into the Intra- and Inter-Camera Similarity (IICS) and Intra- and Inter-Domain Similarity (IIDS)
frameworks for unsupervised person re-identification (Re-ID). These frameworks follow a two-stage process
that first generates pseudo labels by modeling both intra-camera and inter-camera relationships. These pseudo
labels are then used to train feature encoders that learn identity representations consistent across multiple cam-
eras. We improve upon this scheme by replacing the ResNet backbone with ConvNeXt—a convolutional ar-
chitecture inspired by vision transformers, combining modern design principles with the efficiency of CNNs to
achieve state-of-the-art performance in image recognition tasks. Additionally, we introduce two normalization
techniques: (1) Adaptive Instance-Batch Normalization (AIBN) and (2) Transform Normalization (TNorm).
Extensive ablation studies demonstrate that applying AIBN in the final ConvNeXt stages (Stages 3 and 4), and
inserting TNorm after Stages 1 through 3, leads to significant performance improvements. We also analyze
four ConvNeXt variants within the IICS/IIDS framework and demonstrate that larger ConvNeXt models con-
sistently yield better performance. Experimental results on the Market1501, DukeMTMC-reID, and MSMT17
benchmarks show that our method achieves state-of-the-art performance among unsupervised person Re-ID
approaches in terms of mean Average Precision (mAP), underscoring the potential of ConvNeXt-based archi-
tectures for scalable, label-free re-identification.

1 Introduction

Person Re-Identification (Re-ID) refers to the task of
matching a person observed in one camera to the same
individual seen earlier, either in the same or a different
camera. This problem naturally arises in large-scale
video surveillance systems and plays a critical role
in applications such as security monitoring, search
and rescue, and smart infrastructure. For example,
in a shopping mall equipped with multiple cameras,
person Re-ID enables operators to associate a visi-
tor’s current appearance with past sightings and to
track their movement across non-overlapping camera
views.

Despite a decade of research and growing inter-
est from public safety agencies, person Re-ID re-
mains an unsolved problem. The core challenge lies
in reliably identifying individuals across diverse and
uncontrolled conditions, such as variations in cam-
era viewpoint, lighting, occlusion, posture, and cloth-
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ing. These difficulties are amplified in real-world
surveillance settings, where high-resolution imagery
and biometric data are often unavailable, and captures
may occur across different days or weeks.

In this work, we study the person Re-ID prob-
lem under practical assumptions: individuals are pho-
tographed by multiple cameras with non-overlapping
views, and there are no clothing changes across cap-
tures. These assumptions are consistent with pub-
licly available datasets—Market1501, DukeMTMC-
reID, and MSMT17—where images of individuals
are taken around the same time using multiple cam-
eras. Consequently, clothing remains consistent, al-
lowing us to focus on addressing challenges related
to domain shift and feature discrimination.

A key requirement for person Re-ID is learning
camera-invariant representations—features that cap-
ture identity while ignoring confounding factors such
as background clutter, viewpoint, or style. Deep
learning methods have become standard for this task,
with CNN backbones (e.g., ResNet-50) pre-trained on
ImageNet widely adopted as feature extractors. These



features are typically matched using nearest-neighbor
search or distance-based ranking. More recent meth-
ods integrate metric learning or domain adaptation to
improve robustness across camera domains.

Among recent unsupervised Re-ID approaches,
IICS and IIDS stand out for their two-stage pseudo-
labeling strategies: intra-camera and inter-camera la-
bel generation (Xuan and Zhang, 2021; Xuan and
Zhang, 2022). These methods also incorporate nor-
malization strategies—Adaptive Instance and Batch
Normalization (AIBN) and Transform Normalization
(TNorm) into the ResNet backbone to mitigate intra-
and inter-camera variations, respectively.

In this paper, we extend the IICS/IIDS frame-
work by replacing the ResNet backbone with Con-
vNeXt, a convolutional architecture inspired by vi-
sion transformers. We evaluate the effectiveness of
inserting AIBN and TNorm into different stages of
ConvNeXt, and study their impact on the learned rep-
resentations. Our findings show that AIBN improves
intra-camera invariance when applied in the deeper
stages (stages 3 and 4), while TNorm is most effec-
tive when used in early stages (stages 1–3), where it
helps normalize style shifts across camera views. We
further evaluate four ConvNeXt variants of increas-
ing size and observe that larger models consistently
yield higher mean Average Precision (mAP) scores.
When AIBN and TNorm are properly integrated, our
method achieves state-of-the-art performance on the
Market1501 and MSMT17 datasets, and competitive
results on DukeMTMC-reID.

2 Related Work

Person Re-Identification (Re-ID) is a critical prob-
lem in video surveillance, aiming to match individu-
als across non-overlapping camera views. Traditional
approaches relied on hand-crafted features such as
color histograms and texture descriptors (Liu et al.,
2017; ?), but the advent of deep learning, especially
convolutional neural networks (CNNs), has led to a
paradigm shift in Re-ID research (Li et al., 2014).

Supervised learning has driven rapid progress
in Re-ID. Benchmarks such as Market1501 (Zheng
et al., 2015) and DukeMTMC-reID (Ristani et al.,
2016) show dramatic improvements, with Rank-1 ac-
curacy increasing from 4̃0% to over 95% in recent
years (Liu et al., 2020). AlignedReID (Zhang et al.,
2017) introduced a two-branch architecture combin-
ing global and local features with triplet hard loss.
PCB (Part-based Convolutional Baseline) (Sun et al.,
2018) further emphasized part-level representations
with refined pooling techniques to capture discrimi-

native regions. Luo et al. (Luo et al., 2019) proposed
a strong baseline using ResNet50 with softmax and
triplet loss, enhanced by the BNNeck design to sepa-
rate metric and classification loss spaces. Other tech-
niques include hash-code learning for efficient index-
ing (Liu et al., 2019), body-part attention for occlu-
sion robustness (Somers et al., 2023), and clothing-
invariant feature learning using adversarial loss (Gu
et al., 2022). VP-ReID (Wei et al., 2018a) further ex-
plores retrieval acceleration using hierarchical clus-
tering.

Due to the high cost of annotation, unsupervised
approaches aim to learn Re-ID models from unla-
beled data. These are commonly categorized into
three groups. (1) Domain adaptation methods re-
duce feature gaps between source and target domains.
CORAL (Sun and Saenko, 2016) aligns second-order
statistics, while MMFA (Lin et al., 2018) aligns mid-
level attribute features using MMD loss. Camera-
aware similarity consistency learning (Wu et al.,
2019a) improves feature coherence across views.
AGD (Lu et al., 2022) uses geometric distillation and
dreaming memory for incremental adaptation with-
out data. (1) CycleGAN (Zhong et al., 2018b) en-
ables image-to-image translation across camera do-
mains using cycle consistency, facilitating camera-
invariant representation learning. PTGAN (Wei et al.,
2018b) preserves person identity while mapping style
features. Advanced disentangling models separate id-
related/unrelated features for improved transfer (Zou
et al., 2020b). Such approaches often rely on adver-
sarial and perceptual losses to preserve structure dur-
ing translation (Zhu et al., 2017). (3) Pseudo-labeling
techniques cluster feature representations to assign
surrogate labels. PUL (Fan et al., 2018) adopts self-
paced learning with k-means and CNN fine-tuning.
BUC (Lin et al., 2019) uses bottom-up merging of
clusters. MMCL (Wang and Zhang, 2020) com-
bines memory banks with multi-label classification.
Mutual-learning techniques such as NRMT (Zhao
et al., 2020), MMT (Ge et al., 2020a), and MEB-
Net (Zhai et al., 2020b) mitigate label noise through
co-teaching or ensemble mechanisms. IICS (Xuan
and Zhang, 2021) and IIDS (Xuan and Zhang, 2022)
enhance label quality by performing intra- and inter-
camera similarity analysis. They also introduce
normalization layers (AIBN, TNorm) and use self-
distillation to bridge domain gaps.

Commonly used benchmarks for evaluating Per-
son Re-ID schemes include Market1501 (Zheng et al.,
2015), DukeMTMC-reID (Ristani et al., 2016), and
MSMT17 (Wei et al., 2018b). Market1501 includes
1,501 identities from 6 cameras, while Duke con-
tains 702 identities from 8 cameras. MSMT17, the



most challenging, features 4,101 identities from 15
indoor/outdoor cameras with significant variation in
lighting and background conditions.

2.1 Contributions

While supervised Re-ID methods dominate perfor-
mance metrics, their reliance on labeled data lim-
its scalability. Unsupervised approaches, especially
those using pseudo-labels, offer practical alternatives.
This work extends the IICS/IIDS framework by re-
placing ResNet with ConvNeXt (Liu et al., 2022), a
modern CNN that achieves competitive performance
with transformer-based models. We evaluate multi-
ple ConvNeXt variants and explore the integration of
AIBN and TNorm. The proposed scheme is evaluated
on Market1501, DukeMTMC-reID, and MSMT17
benchmarks, and the experimental results demon-
strate notable gains on Market1501 and MSMT17
datasets confirming the viability of modern CNNs in
unsupervised Re-ID.

3 Methodology

Person Re-ID aims to retrieve the most visually simi-
lar instance of a query image Iq from a gallery set G .
This can be formulated as:

g = argmax
g∈[1,G]

sim(Iq,Ig), (1)

where Ig ∈ G and G = |G |. While some gallery im-
ages may have identity annotations, Re-ID is also use-
ful in unlabelled settings such as public surveillance,
where it supports person tracking across space and
time.

The central component of any Re-ID pipeline is
the feature extractor F , which maps an input image
to a feature vector in RD. The goal is to ensure that
features of the same identity are closer together than
those of different individuals. This leads to a distance-
based formulation:

g = argmin
g∈[1,G]

∥F (Iq)−F (Ig)∥2, (2)

where F (I;Θe) denotes the feature extractor parame-
terized by Θe. Our objective is to learn a feature ex-
tractor that captures identity-discriminative features
while being robust to variations such as lighting,
viewpoint, occlusion, and camera styles—without any
labeled data.

Images captured by any camera vary due to
factors such as person identity, pose, orientation,
and clothing. However, when images are captured

Figure 1: TSN-e plots visualizing the features computed us-
ing DukeMTMC-reID dataset. Here different markers rep-
resent different cameras and colors denote identities. (Top-
row) the effects of intra-camera training, (middle-row) the
effect of inter-camera training, and (bottom-row) the effect
of inter- and intra-camera training.

across multiple cameras, additional variation arises
from camera-specific artifacts like color response and
placement. Work by Xuan and Zhang (Xuan and
Zhang, 2021; Xuan and Zhang, 2022) argues convinc-
ingly that both intra-camera and inter-camera varia-
tions must be considered when designing a feature
extractor for person re-identification (Re-ID). They
propose a general framework that cleanly separates
feature learning into two stages—inter- and intra-
camera—to address these distinct sources of varia-
tion. Notably, their approach does not require labeled
training data, making it particularly well-suited to
real-world deployments, where acquiring large-scale
labeled datasets is often infeasible. In this work, we
adopt this two-stage framework as discussed below.

3.1 Intra-Camera Training Stage

The intra-camera stage focuses on learning discrimi-
native features within individual cameras. It consists
of two steps: (A) camera-specific pseudo-label gener-



ation, and (B) feature extractor refinement.

3.1.1 Camera-Specific Pseudo-Labeling (A)

We begin by generating camera-specific pseudo-
labels. Assume access to an initial feature extractor
F , commonly initialized using a model pre-trained
on ImageNet (e.g., ResNet50). The training set T =
∪C

c=1Ic includes images from C different cameras,
where each Ic denotes the image set for camera c. For
each camera c, we compute a set of features:

Xc = {x = F (I;Θe) | I ∈ Ic} .

These features are clustered using agglomerative hi-
erarchical clustering with average linkage, yielding
clusters {P k

c }
Kc
k=1, such that Xc =

⋃Kc
k=1 P k

c and P i
c ∩

P j
c = ∅ for all i ̸= j. Clustering is based on pairwise

Euclidean distances in feature space.
Each image I ∈ Ic is then assigned a pseudo-label

k if its feature belongs to cluster P k
c . These pseudo-

labels are camera-specific, and thus labels across dif-
ferent cameras are not comparable—this distinction is
addressed during the inter stage.

3.1.2 Feature Extractor Refinement (B)

Using the camera-specific pseudo-labels, we refine
the feature extractor F through supervised learning.
For each camera c, we define a Kc-way classifier
Kc : x→RKc , parameterized by Θc. The joint parame-
ters {Θe,Θ1, . . . ,ΘC} are optimized using the follow-
ing loss:

lintra = ∑
I∈T

⊮Ic(I) · cross-entropy(p̂,p) ,

where p̂ = Kc(F (I;Θe);Θc) and p is the one-hot en-
coding of the assigned pseudo-label for I. The indica-
tor function ⊮Ic(I) equals 1 if I ∈ Ic and 0 otherwise.

The cross-entropy loss is defined as:

cross-entropy(p̂,p) =−∑
i

pi log p̂i.

This procedure trains both camera-specific classifiers
and a shared feature extractor F . The two steps—
pseudo-labeling and refinement—can be repeated it-
eratively to progressively improve F .

3.2 Inter-Camera Training Stage

The inter stage addresses variations across cameras.
It mirrors the intra stage in structure, comprising (C)
global pseudo-label generation and (D) feature extrac-
tor refinement.

3.2.1 Global Pseudo-Labeling (C)

Features for all training images X = {F (I;Θe) | I ∈
T } are clustered into K groups using agglomerative
clustering with average linkage. In addition to Eu-
clidean distance in feature space, clustering incorpo-
rates Jaccard similarity derived from camera-specific
classifiers.

For a given image I, each classifier Kc produces
a Kc-dimensional probability vector. These outputs
are concatenated and normalized into a distribution q.
The Jaccard similarity between two images Il and Im
is computed as:

∆(Il ,Im) =
|ql ∩qm|
|ql ∪qm|

.

Each image is assigned to a global cluster P k based on
its feature, resulting in cross-camera pseudo-labels.

3.2.2 Feature Extractor Refinement (D)

Using the global pseudo-labels, we refine F via su-
pervised training with a K-way classifier K : x →RK ,
parameterized by Θ. The optimization minimizes:

linter = ∑
I∈T

cross-entropy(p̂,p) ,

where p̂ = K (F (I;Θe);Θ) is the predicted label and
p is the one-hot encoded pseudo-label.

As in the intra stage, this process can be repeated
to further refine the model.

3.3 Overall Framework

The complete framework proposed in (Xuan and
Zhang, 2021; Xuan and Zhang, 2022) alternates be-
tween intra- and inter-stage training. Specifically, the
following regime is adopted:

[(A,B)×3 followed by (C,D)×2]×40.
We will soon see that both intra- and inter-stage learn-
ing are essential. Omitting either leads to a signif-
icant drop in performance, highlighting the impor-
tance of jointly addressing within-camera and cross-
camera variations.

3.4 Feature Extractor: ConvNeXt

Unlike the original IICS/IIDS which use ResNet50,
we replace the backbone with ConvNeXt (Liu et al.,
2022)—a modern CNN architecture inspired by vi-
sion transformers. We integrate AIBN and TNorm
into different ConvNeXt stages to improve domain ro-
bustness. In our experiments, placing AIBN in stages
3 and 4, and TNorm in stages 1–3 yields the best re-
sults. For details about ConvNeXT, we refer the kind
reader to (Liu et al., 2022).



Table 1: Results on MSMT17 dataset. Pseudo Label* indicates that the psuedo labels are initially constructed by using a
pre-trained person Re-ID model. DA denotes Distribution Alignment.

Type Method (Reference & Venue) MSMT17
Source mAP Rank-1 Rank-5 Rank-10

GANs
PTGAN (Wei et al., 2018b) (CVPR 2018) Market 2.9 10.2 - 24.4
ECN (Zhong et al., 2019) (CVPR 2019) Market 8.5 25.3 36.3 42.1
SSG (Fu et al., 2019) (ICCV 2019) Market 13.2 31.6 - 49.6

DA
NRMT (Zhao et al., 2020) (ECCV 2020) Market 19.8 43.7 56.5 62.2
DG-Net++ (Zou et al., 2020a) (ECCV 2020) Market 22.1 48.4 60.9 66.1
MMT-1500 (Ge et al., 2020a) (ICLR 2020) Market 22.9 49.2 63.1 68.8

Pseudo Label*

PTGAN (Wei et al., 2018b) (CVPR 2018) Duke 3.3 11.8 - 27.4
ECN (Zhong et al., 2019) (CVPR 2019) Duke 10.2 30.2 41.5 46.8
SSG (Fu et al., 2019) (ICCV 2019) Duke 13.3 32.2 - 51.2
NRMT (Zhao et al., 2020) (ECCV 2020) Duke 20.6 45.2 57.8 63.3
DG-Net++ (Zou et al., 2020a) (ECCV 2020) Duke 22.1 48.8 60.9 65.9
MMT-1500 (Ge et al., 2020a) (ICLR 2020) Duke 23.3 50.1 63.9 69.8

Pseudo Label

MMCL (Wang and Zhang, 2020) (CVPR 2020) None 11.2 35.4 44.8 49.8
JVTC+ (Zhang et al., 2021) (ECCV 2020) None 17.3 43.1 53.8 59.4
SpCL (Ge et al., 2020b) (NeurIPS 2020) None 19.1 42.3 55.6 61.2
IICS (Xuan and Zhang, 2021) (CVPR 2021) None 26.9 56.4 68.8 73.4
IIDS (Xuan and Zhang, 2022) (CVPR 2022) None 35.1 64.4 76.2 80.5

Our Method

Iso-ConvNeXt-S None 27.5 57.3 69.1 74.5
Iso-ConvNeXt-S (AIBN) None 29.6 60.0 72.4 77.9
Iso-ConvNeXt-S (AIBN, TNorm) None 36.4 65.1 77.8 82.6
ConvNeXt-B (AIBN, TNorm) None 40.2 71.3 82.0 86.3

3.5 Adaptive Instance and Batch
Normalization

Adaptive Instance and Batch Normalization (AIBN)
builds on Batch-Instance Normalization (BIN) by
adaptively blending Batch Normalization and In-
stance Normalization through learnable gates, al-
lowing the model to balance global statistics with
per-sample style adjustments. In ConvNeXt-based
person re-identification, AIBN is applied in later
stages (Stages 3 and 4) to effectively normalize
camera-specific variations while preserving identity-
discriminative features, leading to improved mAP on
benchmarks like Market1501 and MSMT17.

Mathematically, let x ∈ RN×C×H×W be the input
tensor. Here N denotes the batch size. Then Batch
Normalization (BN) statistics are

µc
bn =

1
NHW

N

∑
n=1

H

∑
h=1

W

∑
w=1

xnchw, and

σ
2,c
bn =

1
NHW

N

∑
n=1

H

∑
h=1

W

∑
w=1

(xnchw −µc
bn)

2.

Similarly, Instance Normalization (IN) statistics are

µn,c
in =

1
HW

H

∑
h=1

W

∑
w=1

xnchw, and

σ
2,n,c
in =

1
HW

H

∑
h=1

W

∑
w=1

(xnchw −µn,c
in )2.

AIBN statistics with learnable gate ρc ∈ [0,1] are

µn,c
aibn = ρ

c ·µn,c
in +(1−ρ

c) ·µc
bn, and

σ
n,c
aibn = ρ

c ·σn,c
in +(1−ρ

c) ·σc
bn.

This yields

ynchw = γ
c · x̂nchw +β

c,where

x̂nchw =
xnchw −µn,c

aibn√
σ

n,c
aibn + ε

.

3.6 Transform Normalization

Transform Normalization (TNorm) is a lightweight,
learnable normalization layer designed to mitigate do-
main shifts in unsupervised person re-identification
by applying a camera-aware linear transformation fol-
lowed by normalization. Introduced in the MCRN
framework (Zhang et al., 2022), TNorm is par-
ticularly effective in early network stages where
low-level variations are prominent, complementing
deeper-layer techniques like AIBN. When integrated
into architectures like ResNet or ConvNeXt, TNorm
improves performance across datasets such as Mar-
ket1501 and MSMT17 by enabling better camera-
specific feature alignment without requiring labels.

Mathematically, let x ∈ RN×C be a feature vec-
tor from the output of a backbone network, and let
c∈{1, . . . ,C′} denote the camera index (domain). For
each camera c, Transform Normalization (TNorm)



Table 2: Results on Market1501 dataset. Pseudo Label* indicates that the psuedo labels are initially constructed by using a
pre-trained person Re-ID model. DA stands for Distribution Alignment.

Type Method (Reference & Venue) Market1501
Source mAP Rank-1 Rank-5 Rank-10

GANs
PTGAN (Wei et al., 2018b) (CVPR 2018) Duke - 38.6 - 66.1
HHL (Zhong et al., 2018a) (ECCV 2018) Duke 31.4 62.2 78.8 84.0
DG-Net++ (Zou et al., 2020a) (ECCV 2020) Duke 61.7 82.1 90.2 92.7

DA
TJ-AIDL (Wang et al., 2018) (CVPR 2018) Duke 26.5 58.2 74.8 81.8
MMFA (Lin et al., 2018) (BMVC 2018) Duke 27.4 56.7 75.0 81.8
CSCL (Wu et al., 2019b) (ICCV 2019) Duke 35.6 64.7 80.2 85.6

Pseudo Label*

MAR (Yu et al., 2019) (CVPR 2019) MSMT17 40.0 67.7 81.9 -
AD-Cluster (Zhai et al., 2020a) (CVPR 2020) Duke 68.3 86.7 94.4 96.5
NRMT (Zhao et al., 2020) (ECCV 2020) Duke 71.7 87.8 94.6 96.5
MMT-500 (Ge et al., 2020a) (ICLR 2020) Duke 71.2 87.7 94.9 96.9
MEB-Net* (Zhai et al., 2020b) (ECCV 2020) Duke 71.9 87.5 95.2 96.8

Pseudo Label

LOMO (Liao et al., 2015) (CVPR 2015) None 8.0 27.2 41.6 49.1
BOW (Zheng et al., 2015) (ICCV 2015) None 14.8 35.8 52.4 60.3
BUC (Lin et al., 2019) (AAAI 2019) None 29.6 61.9 73.5 78.2
HCT (Zeng et al., 2020) (CVPR 2020) None 56.4 80.0 91.6 95.2
MMCL (Wang and Zhang, 2020) (CVPR 2020) None 45.5 80.3 89.4 92.3
JVTC+ (Li and Zhang, 2020) (ECCV 220) None 47.5 79.5 89.2 91.9
IICS (Xuan and Zhang, 2021) (CVPR 2021) None 72.1 88.8 95.3 96.9
IIDS (Xuan and Zhang, 2022) (CVPR 2022) None 78.3 91.2 96.2 97.7

Our Method

Iso-ConvNeXt-S None 72.7 89.8 95.4 97.2
Iso-ConvNeXt-S (AIBN) None 74.8 91.4 97.2 98.0
Iso-ConvNeXt-S (AIBN, TNorm) None 79.7 94.6 98.1 98.7
ConvNeXt-B (AIBN, TNorm) None 83.1 97 99.2 99.6

computes camera-specific normalization as:

x̂i =
xi −µ(c)√
σ2(c)+ ε

,

where

µ(c) =
1

Nc
∑
i∈Ic

xi, and

σ
2(c) =

1
Nc

∑
i∈Ic

(xi −µ(c))2.

Here Ic denotes the set of samples from camera c, and
Nc = |Ic|. The Affine transformation is shared across
all camera

yi = γ · x̂i +β,

where γ and β are learnable parameters shared across
all cameras, and ε is a small constant for numerical
stability.

3.7 The Need for Intra- and
Inter-Camera Training Stages

We investigate the effect of intra- and inter-camera
training on feature representation. Figure 1 presents
t-SNE visualizations of features extracted from mul-
tiple identities across different cameras. Each marker
shape corresponds to a specific camera, while colors
represent different identities. The left column shows

the feature distributions before training, and the right
column shows them after training. The top row corre-
sponds to inter-camera training only, the middle row
to intra-camera training only (note that Jaccard simi-
larity is unavailable in this case, as it becomes acces-
sible only after inter-camera training), and the bottom
row corresponds to both intra- and inter-camera train-
ing stages.

An ideal outcome is one where features of the
same identity—despite being captured by different
cameras—cluster together in the embedding space.
As the plots demonstrate, neither inter-camera nor
intra-camera training alone is sufficient to achieve
this. Only the joint training setup results in identity-
consistent clustering, as clearly illustrated in Figure 1
(bottom-right).

4 Results

We evaluated our method against other unsupervised
and transfer learning approaches on three widely-
used datasets: Market1501, DukeMTMC-reID, and
MSMT17. Tables 1, 2, and 3 present comparisons
of different variants of our method with existing ap-
proaches on these datasets, respectively. All reported
accuracy values for our model are averaged over three
runs using different random seeds to ensure robust-
ness.



Table 3: Results on DukeMTMC dataset. Pseudo Label* indicates that the psuedo labels are initially constructed by using a
pre-trained person Re-ID model. DA stands for Distribution Alignment.

Type Method (Reference & Venue) DukeMTMC-reID
Source mAP Rank-1 Rank-5 Rank-10

GANs
PTGAN (Wei et al., 2018b) (CVPR 2018) Market - 27.4 - 50.7
HHL (Zhong et al., 2018a) (ECCV 2018) Market 27.2 46.9 61.0 66.7

DG-Net++ (Zou et al., 2020a) (ECCV 2020) Market 63.8 78.9 87.8 90.4

DA
TJ-AIDL (Wang et al., 2018) (CVPR 2018) Market 23.0 44.3 59.6 65.0

MMFA (Lin et al., 2018) (BMVC 2018) Market 24.7 45.3 59.8 66.3
CSCL (Wu et al., 2019b) (ICCV 2019) Market 30.5 51.5 66.7 71.7

Pseudo Label*

MAR (Yu et al., 2019) (CVPR 2019) MSMT17 48.0 67.1 79.8 -
AD-Cluster (Zhai et al., 2020a) (CVPR 2020) Market 54.1 72.6 82.5 85.5

NRMT (Zhao et al., 2020) (ECCV 2020) Market 62.2 77.8 86.9 89.5
MMT-500 (Ge et al., 2020a) (ICLR 2020) Market 63.1 76.8 88.0 92.2

MEB-Net* (Zhai et al., 2020b) (ECCV 2020) Market 63.5 77.2 87.9 91.3

Pseudo Label

LOMO (Liao et al., 2015) (CVPR 2015) None 4.8 12.3 21.3 26.6
BOW (Zheng et al., 2015) (ICCV 2015) None 8.3 17.1 28.8 34.9

BUC (Lin et al., 2019) (AAAI 2019) None 22.1 40.4 52.5 58.2
HCT (Zeng et al., 2020) (CVPR 2020) None 50.7 69.6 83.4 87.4

MMCL (Wang and Zhang, 2020) (CVPR 2020) None 40.2 65.2 75.9 80.0
JVTC+ (Li and Zhang, 2020) (ECCV 2020) None 50.7 74.6 82.9 85.3
IICS (Xuan and Zhang, 2021) (CVPR 2021) None 59.1 76.9 86.1 89.8
IIDS (Xuan and Zhang, 2022) (CVPR 2022) None 68.7 82.1 90.8 93.7

Our Method

Iso-ConvNeXt-S None 48.2 67.1 77.3 80.6
Iso-ConvNeXt-S (AIBN) None 54.3 72.8 81.3 84.6

Iso-ConvNeXt-S (AIBN, TNorm) None 60.8 78.3 85.5 89.8
ConvNeXt-B ( AIBN, TNorm) None 65.2 80.3 83.4 87.6

The last four rows of each table detail the perfor-
mance of our method in various configurations. Iso-
ConvNeXt-S refers to the smallest isotropic version
of ConvNeXt, used as the feature extractor within
the IICS/IIDS framework. Iso-ConvNeXt-S (AIBN)
incorporates AIBN into the ConvNeXt backbone,
while Iso-ConvNeXt-S (AIBN, TNorm) includes both
AIBN and TNorm. The best performance is achieved
by ConvNeXt-B (AIBN, TNorm), a larger ConvNeXt
variant enhanced with both normalization techniques.

Our method is compared with several state-of-the-
art approaches, including GAN-based models such as
PTGAN (Wei et al., 2018b), distribution alignment-
based methods like TJ-AIDL (Wang et al., 2018), and
pseudo-labeling strategies such as MAR (Yu et al.,
2019). Among these, pseudo-label-based techniques
consistently outperform others.

Results in tables 1, 2, and 3 demonstrate that our
approach surpasses both IICS and IIDS methods on
the MSMT17 and Market1501 datasets. The perfor-
mance is comparable to (Xuan and Zhang, 2022) on
Duke dataset. We suggest the reader to pay particular
attention to Iso-ConvNext-S (AIBN, TNorm) config-
uration, which, roughly speaking, has the same num-
ber of parameters as the ResNet50 backbone used in
IICS/IIDS (see Table 5). Table 4 compares the perfor-
mance for ConvNeXT variants used in this work. The
improved performance of ConvNeXt over the ResNet
backbone—originally used in IICS/IIDS—can be at-

tributed to its use of depthwise and pointwise con-
volutions. This architectural design separates spatial
and channel-wise processing, enabling more effec-
tive learning of discriminative spatial features (e.g.,
body structure) and appearance cues (e.g., clothing).
Such separation enhances the model’s capacity to
distinguish individuals, leading to better person re-
identification.

4.1 Ablation study

Intra- and inter-camera training stages: We in-
vestigate the impact of intra-camera and inter-camera
training. In the first experiment, we use a pre-trained
ConvNeXt model without any fine-tuning. In subse-
quent experiments, we examine the effects of apply-
ing only intra-camera or only inter-camera training.
For the inter-camera training stage, we compute fea-
ture similarity using CNN embeddings, without in-
corporating Jaccard similarity. Finally, we perform
both intra- and inter-camera training using ConvNeXt
as the feature extractor, without incorporating AIBN
or TNorm enhancements. As shown in Table 6, the
highest performance is achieved when both intra- and
inter-camera training are applied.

Effectiveness of AIBN and TNorm, and Their
Insertion Locations: To address intra-camera and
inter-camera variations during feature extraction, we
integrate two normalization techniques—AIBN and



Table 4: Variants of ConvNeXt used in this paper. Models were pre-trained on ImageNet1K.

Dataset Market Duke MSMT
Set up mAP Rank1 mAP Rank1 mAP Rank1

Iso-ConvNeXt-S AIBN 74.8 91.4 54.3 72.8 29.6 60.0
AIBN+TNorm 79.7 94.6 60.8 78.3 36.4 65.1

ConvNeXt-T AIBN 75.2 92.3 55.1 73.5 30.2 61.4
AIBN+TNorm 81.5 95.6 62.0 91.3 38.6 68.3

ConvNeXt-S AIBN 75.9 93.0 55.7 74.1 32.5 62.7
AIBN+TNorm 82.3 96.1 62.5 91.9 39.1 69.4

ConvNeXt-B AIBN 76.5 93.8 56.5 75.3 34.0 63.5
AIBN+TNorm 83.1 97 65.2 80.3 40.2 71.3

Table 5: Model complexity and parameter counts of various
architectures. ’M’ denotes millions of parameters, and ’G’
denotes computational complexity in gigaflops (GFLOPs),
following the convention in (Liu et al., 2022).

Architecture #Params FLOPs
ResNet-50 25.6M 4.1G

Iso-ConvNeXt-S 22M 4.3G
ConvNeXt-T 28.6M 4.5G
ConvNeXt-S 49.6M 8.7G
ConvNeXt-B 88.6M 15.4G

Table 6: The role of inter- and intra-camera training stages.

Dataset Market Duke
mAP Rank1 mAP Rank1

Pretrain 5.7 16.5 4.8 13.2
Intra 46.3 69.9 28.1 45.8

Inter (w/o Jaccard) 27.2 48.8 8.2 17.1
Intra + Inter 72.7 89.8 48.2 67.1

TNorm—into the ConvNeXt architecture. AIBN
is designed to reduce intra-camera variations aris-
ing from differences in pose, appearance, and other
identity-specific factors. In contrast, TNorm targets
inter-camera variations caused by differences in cam-
era characteristics such as color shifts. Our experi-
ments show that replacing all LayerNorm (LN) layers
in ConvNeXt with AIBN leads to a drop in perfor-
mance. However, selectively applying AIBN in stages
3 and 4 improves results. The detailed impact of dif-
ferent AIBN insertion points is summarized in Ta-
ble 7. To further mitigate inter-camera discrepancies,
we insert TNorm layers after specific stages of Con-
vNeXt. As shown in Table 8, the best performance
is achieved when TNorm is applied after stages 1, 2,
and 3.

5 Conclusions

This work enhances unsupervised person re-
identification by integrating ConvNeXt into the
IICS/IIDS framework. Replacing ResNet with
ConvNeXt, especially larger variants, improves
accuracy. We introduce two key normalization

strategies—AIBN and TNorm—and show that their
strategic placement (AIBN in final stages, TNorm
after early stages) significantly boosts performance.
Combining intra- and inter-camera training further
strengthens identity consistency. Experiments on
Market1501, DukeMTMC, and MSMT17 confirm
our method outperforms recent IICS/IIDS variants,
particularly on Market1501 and MSMT17.

5.1 Ethical and Societal Concerns

Person Re-ID systems raise significant ethical and
societal concerns, primarily due to their potential to
infringe on individual privacy by enabling continu-
ous, unconsented surveillance across public and pri-
vate spaces. These systems often operate without
transparency or accountability, making it difficult to
contest or audit misidentifications, particularly when
powered by opaque deep learning models. Moreover,
Re-ID technologies may exhibit bias against under-
represented demographic groups due to imbalanced
training data, leading to unfair treatment or dispro-
portionate surveillance of marginalized communities.
The widespread deployment of such systems risks
normalizing constant monitoring, eroding public trust
and potentially enabling function creep—where tech-
nologies initially intended for safety are repurposed
for social control, commercial profiling, or political
suppression. Addressing these challenges requires
not only technical safeguards such as fairness-aware
training and explainability, but also robust legal and
ethical frameworks to ensure responsible use.

5.2 The Use of DukeMTMC-reID

Despite its known privacy concerns and the fact that
it was decommissioned due to lack of consent in
the original data collection, the DukeMTMC-reID
dataset is still used in academic settings because of its
challenging multi-camera setup, rich annotations, and
its status as a historical benchmark that enables fair
comparisons with prior work. For the sake of full-
disclosure, we decided to include the results on this



Table 7: Ablation study evaluating the impact of inserting AIBN at different stages of the ConvNeXt architecture. For exam-
ple, “AIBN (Block 2-3-4)” indicates that AIBN replaces the LayerNorm layers in stages 2 through 4. The best performance
is achieved when AIBN is applied only in the final two stages (stages 3 and 4).

Dataset Market Duke
Setup mAP Rank1 mAP Rank1

Baseline 72.7 89.8 48.2 67.1
All 50.3 69.9 28.1 45.8

AIBN (Block 1-2) 69.2 85.3 35.6 58.2
AIBN (Block 4) 73.2 90 51.8 71.1

AIBN (Block 2-3-4) 74.2 91.2 53.9 72.3
AIBN (Block 3-4) 74.8 91.4 54.4 72.8

Table 8: Ablation study on the effect of inserting TNorm at different stages of the ConvNeXt architecture. For instance,
“TNorm (stage 1-2-3-4)” indicates that TNorm is inserted after stages 1 through 4. The highest performance is observed
when TNorm is applied after stages 1, 2, and 3.

Dataset Market Duke
Setup mAP Rank1 mAP Rank1

Baseline 72.7 89.8 48.2 67.1
TNorm (Stage 1) 74.3 92.1 50.9 69.2

TNorm (Stage 1-2) 74.9 92.7 51.8 71.1
TNorm (Stage 1-2-3) 75.4 92.4 57.8 76.3

TNorm (Satge 1-2-3-4) 74.2 92 50.2 70.1

dataset despite the fact that our model did not achieve
state-of-the-art mAP scores on this dataset.

5.3 Limitations and Final Word

Despite these gains, our approach faces limitations
in scalability, demographic generalization, and ro-
bustness to occlusion and crowded scenes. Fu-
ture work will explore stronger occlusion model-
ing, domain adaptation for broader demographics,
and privacy-aware dataset construction. Our find-
ings open promising directions for designing scalable,
adaptive, and robust Re-ID systems under real-world,
camera-diverse, and label-sparse conditions.
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