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 A B S T R A C T

Automated advertisement detection in newspapers is a challenging task due to the diversity in print layouts, 
formats, and design styles. This task has critical applications in media monitoring, content analysis, and 
advertising analytics. To address these challenges, we introduce AdVision, a deep-learning-based solution 
that treats advertisements as unique visual objects. We provide a comparative study of various detection 
architectures, including one-stage, two-stage, and transformer-based detectors, to identify the most effective 
approach for detecting advertisements. Our results are validated through extensive experiments conducted 
under different conditions and metrics. Newspapers from four different countries — Denmark, Norway, Sweden, 
and the UK — were selected to demonstrate the variety of languages and print formats. Additionally, we 
conduct a cross-analysis to show how training on one language can generalize to another. To enhance the 
explainability of our results, we employ GradCAM++ (Chattopadhay et al., 2018) heatmaps. Our experiments 
demonstrate that the YOLOv8 model achieves superior performance, balancing high precision and recall with 
minimal inference latency, making it particularly suitable for high-throughput advertisement detection.
1. Introduction

The detection of advertisements in  media is a challenging and 
critical task for  content regulation and advertising analytics. In an era 
where advertisement strategies are rapidly evolving, accurate identifi-
cation of Ads in newspapers enables businesses, advertisers, and media 
analysts to track trends, assess Ad effectiveness, and monitor competi-
tors’ campaigns.  Detecting Ads in newspapers and magazines, whether 
printed or digital, is complicated because of their high similarity with 
the rest of the content. Ads variability in size, design, and placement 
ranges from simple text blurbs to full-page, image-rich layouts. Fig. 
1 illustrates examples of diverse advertisement formats and spatial 
configurations in UK Metro newspaper. Moreover, the line between 
editorial content and advertisements has become increasingly blurred, 
as Ads often mimic the style of news articles. This requires advanced 
detection methods capable of capturing both visual and contextual 
cues. Language diversity and regional editorial styles further reduce 
generalizability across datasets. 

This task falls within the field of computer vision, where object 
detection serves as a foundational capability. Despite progress in deep 
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learning for object detection, advertisement detection in printed media 
remains underexplored, as most existing work targets domains like 
robotics and healthcare (Nazeri et al., 2024; Xie et al., 2024).  Existing 
works on advertisement detection have primarily focused on media 
such as television (Rondan et al., 2025; Wardana & Wibowo, 2023), 
radio (Álvarez et al., 2024), and digital media (Carvalho et al., 2021; 
Jain et al., 2024), often leveraging structured visual or audio cues 
like logos, transitions, or speech patterns. In the case of print media, 
recent efforts have targeted layout-based segmentation or document 
structuring (Almutairi & Almashan, 2019; Bansal et al., 2021), but these 
works typically treat advertisements as secondary elements or focus on 
editorial content. Other approaches, such as ADVISE (Ye & Kovashka, 
2018), AdSegNet (Dhang et al., 2024), and LaBINet (Dhang et al., 
2025), have explored advertisement understanding and integration in 
natural scenes, but they assume that Ads are already visually isolated 
and localized. Similarly, PTPNet (Almgren et al., 2018; Madi et al., 
2021) operate on clearly bounded Ad regions in natural or digital 
images. These assumptions restrict their applicability to the complex, 
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Fig. 1. Examples of UK Metro advertisements displayed in various sizes, locations, and styles. These samples highlight the diversity in placement, ranging from full-page Ads to 
smaller Ads positioned at different sections of the page. While these examples focus on UK newspapers, there are numerous other styles and features in advertisements across 
different newspapers and regions.
overlapping, and layout-rich environments found in newspapers, where 
advertisements often share visual features with surrounding editorial 
elements and lack consistent structural boundaries. This highlights a 
gap for investigation with a dataset including a broad range of formats, 
languages, and styles to capture the variability of advertisements glob-
ally. The balanced sampling strategy ensures robustness and mitigates 
bias, which is crucial for developing reliable and scalable detection 
models.

Localizing advertisements in a newspaper page involves detecting 
and possibly classifying the regions containing Ads. For this, robust 
object detection methods are most appropriate. These methods enable 
the recognition and localization of objects within the image. Among 
these uses, one specific application is the detection of advertisements in 
printed newspapers, which represents a specialized yet significant chal-
lenge (Jonsson, 2022). Unlike standard object detection tasks, which 
often focus on relatively uniform and well-defined object classes, ad-
vertisements in newspapers exhibit a high degree of variability in size, 
design, and embedding context.

As shown in Fig.  1, advertisements can appear in different positions 
on a newspaper page, such as the bottom of the page, across the 
whole page, or in specific sections like the bottom-left or bottom-right. 
These examples from UK newspapers highlight the diversity in size, 
location, and design of Ads. Additionally, newspaper Ads often vary 
significantly across publications and regions, exhibiting different visual 
features and spatial positioning. This variability presents challenges for 
object detection models, as they must accurately detect Ads under a 
wide range of conditions.

The progression of deep learning technologies has notably enhanced 
the capabilities of object detection models, from the early work on R-
CNN (Girshick et al., 2014) to the development of more sophisticated 
and efficient models such as one-stage detectors (e.g., YOLO series Red-
mon et al., 2016) and transformer-based models (e.g., DETR Carion 
et al., 2020). Each model presents a different approach to balancing 
accuracy, computational demand, and adaptability to varied contexts 
and object categories.  These models have shown promise in various 
object detection tasks, but their application to the task of newspaper Ad 
detection has been limited. Unlike standard object detection tasks that 
focus on well-defined object classes, Ads exhibit substantial variability 
in presentation and embedding context.

Building on prior research (Zakaryapour Sayyad et al., 2024), this 
study introduces AdVision, to explore the capability of different object 
detection techniques for newspaper advertisement detection. We first 
examine different object detection models to find the best architecture 
for this application based on criteria such as inference latency and de-
tection accuracy. Then, we focus on the best architecture, YOLOv8 (Reis 
et al., 2023), analyzing it under different conditions. YOLOv8 not only 
provides the best results for our application but also offers good balance 
between inference latency and accuracy.

We extend our investigation to include an analysis of the trained 
Ad detector model’s generalizability across different newspapers. Addi-
tionally, we introduce a novel exploration of how visual factors, such as 
color variations and the spatial positioning of advertisements, influence 
detection accuracy. Contributions of our research include:
2 
1. A comprehensive evaluation of one-stage, two-stage, and
transformer-based object detection models for advertisement 
detection in newspapers.

2. An in-depth analysis of YOLOv8’s performance and generaliz-
ability when applied to various newspaper formats, providing 
valuable insights into the practical deployment of advanced 
object detection models.

3. An exploration of the influence of visual factors, specifically 
color variations and the spatial positioning of advertisements 
within the newspaper layout, on the predictive performance of 
the selected model.

The rest of the paper is structured as follows: Section 2 delves into 
the state-of-the-art, contextualizing our research within the broader 
evolution of object detection technologies. Section 3 outlines the
methodology, including the criteria for model selection, dataset prepa-
ration, and evaluation metrics. Section 4 presents the findings of 
our experimental evaluations, and Section 5 discusses these results, 
offering a detailed interpretation of their significance. Finally, Section 6 
concludes the paper and suggests avenues for future research.

2. Related work

2.1. Advertisement detection

Advertisement detection has been explored across multiple media 
formats, each presenting unique challenges and inspiring specialized 
approaches. Prior research can be broadly categorized by media type: 
television (Rondan et al., 2025; Siddiqui et al., 2021; Wardana & 
Wibowo, 2023), radio (Álvarez et al., 2024), newspapers (Barman 
et al., 2021; Jain et al., 2022), magazines, billboards, and digital 
platforms (Morera et al., 2020; Yang et al., 2022). Techniques span 
from video segmentation and speech processing to layout analysis and 
image recognition. 

Numerous approaches to advertisement processing focus on sym-
bolic reasoning, segmentation, or even blockchain-based delivery
mechanisms (Liu et al., 2020), yet they often presuppose that adver-
tisements have already been detected. For instance, Ye and Kovashka 
(2018) introduced ADVISE, a vision-language embedding model that 
aligns advertisement images with human-written rationale statements 
to interpret symbolic messages. While influential in advancing se-
mantic understanding, ADVISE assumes advertisements are already 
localized, limiting its applicability to raw sources like print media. Sim-
ilarly, Dhang et al. (2024) proposed AdSegNet for detecting billboard 
corners via segmentation in outdoor video scenes, and later introduced 
LaBINet (Dhang et al., 2025), which integrates advertisements into 
natural scenes using Laplace-based Poisson blending. Although LaBINet 
effectively manages Ad insertion, it also assumes pre-identified Ad 
regions and does not address the complexities of Ad detection in 
structured content such as newspapers.

In addition to billboard-focused models, Madi et al. (2021) intro-
duced PTPNet, which uses polygon regression and mask generation 
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to extract advertisements from natural scene images. All the stated 
works are developed and evaluated in contexts where advertisements 
appear as visually distinct, well-bounded regions within structured 
or uncluttered visual environments. The generalizability of AdSegNet 
and PTPNet to visually complex or layout-diverse domains remains 
unexplored. AdVision responds to this gap by offering a solution—
automatically detecting and localizing advertisements within visually 
complex newspaper layouts, thereby enabling frameworks like ADVISE 
and LaBINet to be applied in broader, real-world contexts.

Machine learning techniques for image classification and object 
detection have shown potential to improve the reliability and stan-
dardization of advertisement recognition (English et al., 2021). Prior 
studies, such as Almgren et al. (2018) and Jain et al. (2021), used CNN-
based models to classify scanned or online newspaper images as Ads or 
non-ads, but these methods showed limited accuracy and lacked precise 
localization capabilities. Our work addresses these gaps by employing 
advanced object detection models that support both classification and 
spatial localization of advertisements in complex newspaper layouts.

Within the domain of newspaper image analysis, Bansal et al. 
(2021) introduced a multi-task U-Net framework designed to segment 
text blocks and detect baselines across diverse layout styles. While 
effective for structuring editorial content, their approach does not 
extend to advertisement detection—a task complicated by the visual 
and structural similarities between Ads and articles. Advertisements 
in print media often share typographic and layout characteristics with 
surrounding content, making them difficult to distinguish using models 
optimized for editorial segmentation. In digital media, Jain et al. (2024) 
explored advertisement classification by combining visual and textual 
features with a BERT-based transformer, targeting specific classes of 
Ads in online newspapers. However, this approach targets predefined 
Ad classes rather than the full spectrum of advertising content.

Studies in other media formats, such as television (Carvalho et al., 
2021; Yang et al., 2024), rely on explicit visual cues like logos or brand-
ing elements. However, such cues may be absent or inconsistent in print 
Ads. Addressing this gap, our work focuses on automatic advertisement 
localization in newspapers using a general-purpose visual detector that 
learns ad-specific patterns without relying on predefined markers or 
structural assumptions.

In the realm of newspaper element segmentation, Almutairi and 
Almashan (2019) proposed a Mask R-CNN-based framework for seg-
menting articles, advertisements, and page headers. Their method ef-
fectively addressed general newspaper layout analysis across multiple 
languages and formats. Building on this, Almutairi (2024) introduced 
a more advanced framework utilizing CNNs and Transformers to not 
only detect elements but also categorize pages into sections. While 
highly relevant to our study, this approach treats advertisements as 
secondary elements and does not address the specific challenges of 
advertisement detection across heterogeneous newspaper styles. This 
leaves a gap in developing a robust, efficient system specifically for 
Ad localization and generalization. Our work, AdVision, addresses this 
by focusing exclusively on advertisement detection, leveraging state-
of-the-art object detection architectures, and validating them across 
multiple newspaper datasets and layouts. Furthermore, we introduce 
model explainability techniques to interpret complex visual content, 
setting a foundation for downstream tasks like Ad interpretation or 
content filtering.

Recent studies have demonstrated the potential of deep learning for 
detecting advertisements in newspaper layouts. Barman et al. (2021) 
explored automated document processing by analyzing historical news-
paper data through combined text and image segmentation techniques. 
Their research discusses the challenges of segmenting and classifying 
newspaper pages. However, relying solely on historical data can intro-
duce temporal bias, which affects the applicability of these methods 
to current scenarios due to rapid changes in editorial practices and 
visual presentation styles.  In contrast,  our study builds on prior 
work in newspaper layout analysis by using datasets that reflect modern 
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newspaper designs, resulting in a more practical and generalizable 
solution.

Our research advances the field of advertisement detection within 
newspapers by addressing several critical gaps identified in the lit-
erature. Unlike previous methods, our approach integrates advanced 
computer vision techniques to create a comprehensive and accurate 
detection system. By developing and utilizing extensive, varied datasets 
that reflect the complexities of real-world advertising scenarios, our re-
search enhances the reliability and applicability of Ad detection in print 
media, setting a new standard for future studies in this domain.  To 
the best of our knowledge, no prior work has systematically evaluated 
the generalizability of advertisement detection models across diverse 
newspaper datasets, including unseen newspapers from different lan-
guages and formats. By documenting the strengths and limitations of 
YOLOv8 in these scenarios, we fill a critical gap in the literature and 
offer actionable insights for improving cross-dataset adaptability.

2.2. Object detection

Object detection in computer vision has seen significant advance-
ments, driven by the development of deep learning technologies.  While 
traditional CNN-based object detectors continue to dominate the field, 
emerging models such as capsule-enhanced networks have demon-
strated improved robustness in sparse and noisy environments (Zhang 
et al., 2024), suggesting their potential applicability to visually com-
plex layouts such as printed media.  Research in the domain of deep 
learning-based object detection can be broadly classified into two 
categories: one- and two-stage object detection algorithms (Zou et al., 
2023). Recently, with the introduction of transformer-based method-
ologies in computer vision, a new category of object detectors, known 
as transformer-based object detectors, has emerged, which can be 
integrated into both one-stage and two-stage frameworks.

2.2.1. One and two stage detectors
Two-stage algorithms have emerged as a structured approach for 

accurate object localization in image-based object detection. Notable 
examples include Grid R-CNN (Lu et al., 2019) and Faster R-CNN (Ren 
et al., 2015). Faster R-CNN (Ren et al., 2015) is a key model within 
the two-stage paradigm. It integrates a Region Proposal Network (RPN) 
to efficiently generate potential object regions. The subsequent stage 
refines these regions through regression and classification. This unified 
architecture eliminates the need for separate region proposal methods, 
improving efficiency and accuracy.

Grid R-CNN introduces an innovative grid-guided localization mech-
anism within the two-stage framework. It explicitly captures spatial 
information and leverages the position-sensitive attributes of fully con-
volutional architectures. By predicting grid points and using them to 
guide bounding box determination, Grid R-CNN achieves high-quality 
object localization. A multi-point supervision approach mitigates inac-
curacies, and a two-stage information fusion strategy enhances perfor-
mance. Grid R-CNN’s effectiveness is demonstrated through benchmark 
results and its adaptability to various detection frameworks.

One-stage detectors such as You Only Look Once (YOLO) (Redmon 
et al., 2016) revolutionized object detection by combining the region 
proposal and classification stages into a single network. This approach 
significantly improved detection speed while maintaining competitive 
accuracy. Variants of YOLO, particularly YOLOv8 (Reis et al., 2023), 
have shown impressive performance in various object detection tasks 
due to enhancements in network architecture and training methodolo-
gies. RetinaNet (Lin et al., 2017) introduced a focal loss function to 
address class imbalance in object detection, providing another robust 
one-stage detector that balances speed and accuracy. RTMDet (Lyu 
et al., 2022) and other similar models further optimized this bal-
ance, making them suitable for diverse applications, including real-time 
scenarios.
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2.2.2. Transformer-based detectors
Transformers have recently drawn more interest in the vision and 

object detection task. As a result, a brand-new class called transformer-
based object detection techniques has evolved. Transformers are one 
type of deep learning architecture. It was first proposed in ‘‘Attention 
is all you need’’ paper (Vaswani et al., 2017) to solve NLP tasks. 
DETR (Carion et al., 2020) is the first fully end-to-end transformer-
based object detector (Bar et al., 2022). It discards several hand-
designed components like Spatial Anchor and builds a simpler pipeline 
for the detection task. DETR combines convolutional neural networks 
(CNN) and Transformer-Encoder-Decoders. Building on DETR, DAB-
DETR (Liu et al., 2022) combines a CNN backbone with Transformer 
encoders to extract and refine spatial features. It uses dual queries 
(positional and content) to interact with the decoder, progressively 
refining these queries to generate object predictions.

The Swin Transformer further enhances transformer-based object 
detection by providing a general-purpose backbone for computer vision 
tasks. Its hierarchical architecture and shifted windows achieve high 
performance on benchmarks like the COCO dataset (Lin et al., 2014), 
maintaining computational complexity that is linear in input size. In 
our experiments, we used DAB-DETR and RetinaSwin, employing the 
Swin Transformer (Liu et al., 2021) as a backbone for RetinaNet (Lin 
et al., 2017). RetinaNet combines the Feature Pyramid Network (FPN) 
with ResNet backbones and specialized sub-networks for classification 
and bounding box regression, leveraging the Swin Transformer for 
improved performance.

While the presented models demonstrate high accuracy in object 
detection, their adaptability to the unique characteristics of newspaper 
layouts remains unclear. Additionally, most studies lack emphasis on 
inference efficiency, a critical factor for high-throughput applications. 
The need for a robust and efficient detection framework capable of 
handling the complexities of newspaper advertisements motivates this 
study. Understanding the strengths and limitations of different object 
detection paradigms in this context is crucial for advancing the field.

3. Methodology

This paper introduces AdVision, a methodology for automatically 
finding the advertisement in printed media. Our objective is to pro-
vide the performance trade-off between different state-of-the-art object 
detection architectures to detect advertisements within newspaper pub-
lications. We provide a cross-analysis on these architectures, and also 
present an analysis based on GradCAM++ for the explanability of the 
results. To achieve this, we implemented a comprehensive methodology 
comprising dataset collection and annotation, followed by the applica-
tion of object detection models. This process enabled us to accurately 
identify and extract the coordinates of advertisements, allowing for 
precise localization within the newspaper pages.

3.1. Dataset collection and annotation

The dataset for this study is a diverse collection of newspapers 
from multiple countries, showcasing a variety of languages and print 
formats. The specific newspapers included in the dataset are: (1) 
Berlingske (Berlingske, 2022–2023) from Denmark, (2) Adresseav-
isen (Adresseavisen, 2022–2023) from Norway, (3) Sydsvenskan
(Sydsvenskan, 2022–2023) from Sweden, and (4) UK Metro (Metro, 
2022–2023) from England. The primary objective of compiling this 
multi-source dataset is to introduce linguistic diversity and capture 
the different editorial and advertising styles found across countries. 
Each newspaper is published in the official language of its respective 
country and features unique formatting styles, allowing for the analysis 
of varied advertisement designs and text layouts. To prevent a bias 
in the dataset, it includes balanced samples from each newspaper on 
different days of the week over approximately one year. This approach 
minimizes bias and enhances the comprehensiveness of the analysis.
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Table 1
Dataset statistics containing number of nulls and number of not nulls images for the 
whole annotated data before sampling.
 Dataset name 𝑁𝑛𝑢𝑙𝑙 𝑁𝑎𝑑𝑣 𝑁𝑇 𝑜𝑡𝑎𝑙 𝑃𝑛𝑢𝑙𝑙 Dataset period  
 Berlingske (𝑋1) 2975 1785 4760 62.5% 04/2022–03/2023 
 Adresseavisen (𝑋2) 2676 2573 5249 50% 04/2022–03/2023 
 Sydsvenskan (𝑋3) 2117 1396 3513 60% 10/2022–01/2023 
 UK Metro (𝑋4) 672 1943 2615 34% 04/2022–03/2023 
 Aftonbladet 419 145 564 74.3% 05/2023  
 iTromsø 476 147 623 76.4% 05/2023  

The datasets from the individual newspapers are represented as 
𝑋 = {𝑋1, 𝑋2, 𝑋3, 𝑋4}, where 𝑋𝑖 denotes the set of images from the 𝑖th 
newspaper. For each newspaper 𝑋𝑖, the data is divided into:

• Null images (𝑁𝑛𝑢𝑙𝑙
𝑖 ) Images of newspaper pages without adver-

tisements; and
• Advertised images (𝑁𝑎𝑑𝑣

𝑖 ) Images containing one or more adver-
tisements.

The total number of images in each dataset, 𝑁 𝑡𝑜𝑡𝑎𝑙
𝑖 , is the sum of null 

and advertised images: 

𝑁 𝑡𝑜𝑡𝑎𝑙
𝑖 = 𝑁𝑛𝑢𝑙𝑙

𝑖 +𝑁𝑎𝑑𝑣
𝑖 . (1)

The proportion of null images in each newspaper dataset, repre-
sented as 𝑃 𝑛𝑢𝑙𝑙

𝑖 , is calculated using the formula: 

𝑃 𝑛𝑢𝑙𝑙
𝑖 =

𝑁𝑛𝑢𝑙𝑙
𝑖

𝑁 𝑡𝑜𝑡𝑎𝑙
𝑖

× 100. (2)

This metric, 𝑃 𝑛𝑢𝑙𝑙
𝑖 , quantifies the percentage of pages lacking adver-

tisements, which is a critical factor in understanding advertisement 
frequency and placement strategies across different markets.

A comprehensive overview of the collected data and their respective 
timespans is presented in Table  1. Each page within the newspapers 
is digitized as an image. Additionally, these images have been anno-
tated with bounding boxes to delineate each advertisement, facilitating 
detailed analysis of advertising content and layout across diverse news-
paper styles. To further test and check the generalizability of our 
methodology, we downloaded and annotated additional newspapers 
from Aftonbladet (2023) from Sweden and iTromsø (2023) from Nor-
way for the dates 25 to 31 May 2023. These additional datasets were 
used solely for testing purposes to ensure the robustness of our object 
detection models across different sources and formats.

3.2. Data sampling and balancing

Our initial focus in this study was on the Adresseavisen newspa-
per (𝑋2), chosen for its balanced mix of advertised (adv) and non-
advertised (null) content. However, we encountered challenges with 
the UK Metro dataset (𝑋4) where only 34% of pages were null, indicat-
ing a significant imbalance that could potentially skew the analysis. To 
address this issue and ensure a more balanced dataset across different 
newspaper types, we implemented the following strategies:

• Additional Sampling of Null Pages: We supplemented the UK 
Metro dataset by randomly adding 800 null pages from additional 
dates within the reported period. This adjustment was crucial for 
normalizing the proportion of null to advertised pages, making it 
comparable to the other datasets in our study.

• Equal Sampling Across Categories: For each newspaper dataset 
(𝑋1 to 𝑋4), we sampled an equal number of advertised and 
non-advertised pages, specifically 1396 of each type. This strat-
egy helps maintain data harmony and prevents any model bias 
towards a particular category.
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A random seed (value of 42) was used to ensure that our sampling 
process was reproducible and that the image files were shuf-
fled consistently across different data collection iterations. This 
method helps confirm that our findings are reflective of genuine 
dataset features and not merely artifacts of the selection process.

After addressing these sampling and balancing issues, we divided 
the images into distinct subsets for training, validation, and testing, 
using a 70%–20%–10% split ratio. This distribution strategy was ap-
plied to both the advertised and non-advertised pages to ensure that 
each subset was equally represented. By maintaining this balanced 
approach throughout our study, we aimed to enhance the validity and 
reliability of our experimental findings. This is essential for avoiding 
potential biases and providing a thorough understanding of the model’s 
performance across different types of newspaper content.  Our ap-
proach could be extended to health-related advertising or regulatory 
applications. For instance, studies leveraging statistical feature analysis 
in behavioral data (Zhao et al., 2025) provide a foundation for under-
standing how model outputs might link with real-world physiological 
or behavioral phenomena. Future extensions may consider adversarial 
techniques such as DiGAN, which demonstrated effective correction of 
data imbalance using GANs in biomedical datasets (Zhao et al., 2024). 

3.3. Data preprocessing

Following the results outlined in our previous research
(Zakaryapour Sayyad et al., 2024), we applied similar preprocessing 
techniques in this analysis.  To ensure consistency, all newspapers in 
the dataset were scaled to the same resolution and aspect ratio. We used 
bilinear interpolation to adjust the images to a resolution of 608 × 608 
pixels. Additionally, white padding was applied to maintain a 1:1 aspect 
ratio, preventing distortions during the training and testing phases.

3.4. Model selection

The selection of appropriate models for advertisement detection 
is a critical step in our methodology. We aim to identify models 
capable of accurately detecting and localizing advertisements within 
newspaper pages. Our approach involved evaluating several state-of-
the-art object detection algorithms to determine the most effective one 
for our specific dataset and objectives.

Several factors were considered in the selection process, includ-
ing model accuracy on benchmark datasets, computational efficiency, 
the model’s approach to object detection, and its applicability to the 
problem at hand. The evaluated models include:

1. Faster R-CNN (Ren et al., 2015): Known for its accuracy and 
robustness, Faster R-CNN is a region-based convolutional neu-
ral network that excels in object detection tasks. Its two-stage 
approach—first generating region proposals and then classifying 
these regions—makes it a strong candidate for detecting ad-
vertisements. This model offers high accuracy in various object 
detection benchmarks but at the cost of increased computational 
demand.

2.  Grid R-CNN (Lu et al., 2019): Similar to Faster R-CNN, Grid 
R-CNN uses a two-stage architecture with region proposal net-
works and feature extraction. It refines object locations by pre-
dicting the positions of grid points, which can improve localiza-
tion accuracy, especially for complex shapes.

3. YOLOv8 (Reis et al., 2023): The latest iteration in the YOLO 
series, YOLOv8 builds on the speed and accuracy of its prede-
cessors, incorporating improvements in model architecture and 
training techniques to enhance performance, particularly for 
real-time object detection tasks. The summarized architecture of 
YOLOv8 is shown in Fig.  2. One of the key features of YOLOv8 
is the Anchor-Free Detection. Traditional object detectors use 
5 
anchor boxes of various shapes and sizes to predict object loca-
tions. Anchor-free methods, however, directly predict the center 
of objects, which simplifies the model and reduces computation 
during post-processing. This approach can enhance the model’s 
speed and accuracy by eliminating the need to match anchor 
boxes to ground truth boxes during training. Another key feature 
of the YOLOv8 model is that this model starts with smaller initial 
convolution layer which helps in better capturing fine-grained 
features early in the network.
YOLOv8 backbone structure consists of several convolutional 
layers and the new C2f modules. The smaller initial convolution 
helps in capturing initial features, followed by more complex 
layers for deeper feature extraction. C2f Module is an improved 
version of the CSP (Cross-Stage Partial) module, designed to 
enhance feature extraction efficiency and effectiveness. Residual 
and CSP Blocks improve gradient flow and reduce computational 
costs, making the model more efficient and deeper without per-
formance degradation. The third important feature of YOLOv8 
is Mosaic Augmentation. Mosaic augmentation is a data aug-
mentation technique that combines four images into one during 
training. This helps the model learn to detect objects at different 
scales and contexts. By exposing the model to varied image com-
positions, it becomes more robust. Turning off this augmentation 
in the last epochs of training helps fine-tune the model on more 
natural images, improving final performance.

4. RTMDet (An Empirical Study of Designing Real-Time Object 
Detectors) (Lyu et al., 2022): RTMDet is designed for high 
performance in real-time object detection. It introduces an ef-
ficient architecture with large-kernel depth-wise convolutions 
and dynamic label assignment with soft labels, achieving su-
perior real-time object detection performance and versatility 
across various recognition tasks. It showcased its superiority 
over industrial detectors by demonstrating a parameter-accuracy 
trade-off across various model sizes, making it versatile for 
diverse application scenarios.

5. DAB-DETR (Dynamic Anchor Boxes are better queries for DETR) 
(Liu et al., 2022): DAB-DETR introduces a query formulation 
using dynamic anchor boxes within the DETR framework. This 
method improves detection accuracy and efficiency by utilizing 
box coordinates as queries that are dynamically updated layer-
by-layer in Transformer decoders, offering better handling of 
objects of varying sizes and aspect ratios.

6. DDOD (Disentangle your dense object detector) (Chen et al., 
2021): DDOD focuses on disentangling classification and local-
ization tasks to improve detection accuracy. It uses dynamic 
convolutions to adaptively adjust to the object’s appearance, 
leading to significant performance improvements on benchmarks 
like MS COCO (Lin et al., 2014).

7. RetinaNetSwin (Lin et al., 2017; Liu et al., 2021): Combin-
ing the strengths of RetinaNet and the Swin Transformer, this 
model significantly enhances object detection capabilities. Reti-
naNet introduces a focal loss function to address class imbalance, 
improving both detection accuracy and robustness, making it 
highly effective for identifying objects in dense and complex 
scenes. Meanwhile, the Swin Transformer boosts object detection 
through its hierarchical vision transformer backbone, employing 
shifted windows to enhance feature extraction and scalability. 
Together, these innovations result in a model that captures 
multi-scale features more effectively, pushing the boundaries of 
object detection performance.

Based on a comprehensive set of experiments, we aim to select the 
robust and reliable model for Ad detection in terms of different criteria.
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Fig. 2. An overview of YOLOv8 architecture.
Table 2
Model training setup.
 Model Batch size Backbone Base LR Optimizer

 Faster R-CNN 8 ResNeXt101 (Xie et al., 2017) 8e−05 AdamW  
 Grid R-CNN 8 ResNeXt101 (Xie et al., 2017) 8e−05 AdamW  
 DDOD 24 ResNet50 (Wightman et al., 

2021)
2e−02 SGD  

 RetinaNetSwin 8 Swin (Liu et al., 2021) 8e−05 AdamW  
 DAB-DETR: 2 ResNet50 (Wightman et al., 

2021)
1e−05 AdamW  

 RTMDet 4 CSPNeXt (Wang et al., 2020) 4e−05 AdamW  
 YOLOv8 16 CSPDarknet53 (Bochkovskiy 

et al., 2020)
Auto Auto  

3.5. Training and validation

The analysis presented in this study focuses on two main aspects: 
first, the evaluation of various advertisement detection models under 
different conditions, specifically examining both detection accuracy 
and inference time; and second, the assessment of selected model’s 
generalization capabilities across diverse datasets. Initially, we identi-
fied the best-performing model using a single newspaper, Adresseav-
isen. Subsequently, we tested the generalization of the selected model 
by evaluating its detection accuracy on other types of newspapers. 
To ensure unbiased results, we employed K-fold validation in our 
experiments.

We trained each model on our preprocessed dataset, using the train-
ing subset for model training and the validation subset to tune hyperpa-
rameters and prevent overfitting. The test subset was reserved for final 
evaluation. We ensured that the training and validation processes main-
tained the balanced representation of advertised and non-advertised 
pages to avoid bias.

For configuring the models, our goal was to replicate the optimal 
parameters described in their respective publications. However, due to 
limitations in computational resources, adjustments such as reducing 
the batch size were necessary, as detailed in Table  2. The ROI head 
of two-stage models and the bounding box head of single-stage models 
were specifically designed for a single class (advertised) and initialized 
with pretrained COCO (Lin et al., 2014) weights. All models were 
trained for 150 epochs.

3.6. Evaluation metrics

This research evaluates the performance of various advertisement 
detection models under different conditions. To this end, we utilized 
three primary metrics: Mean Average Precision (mAP), F1 score, and 
inference latency. These metrics were chosen to achieve a balance 
between model accuracy and computational efficiency. By considering 
these metrics we aim to develop a model that is not only accurate but 
also efficient and practical for large-scale deployment.
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Mean Average Precision (mAP) is a performance metric that pro-
vides an aggregate measure of the model’s Precision-Recall trade-off 
across different object detection thresholds. It is calculated as follows: 

𝑚𝐴𝑃 = 1
𝑛

𝑛
∑

𝑖=1
𝐴𝑃 𝑖, (3)

where 𝑛 is the number of classes or categories, and 𝐴𝑃 𝑖 denotes the 
Average Precision for each class. This metric allows us to evaluate the 
model’s performance across all categories comprehensively.

𝐹1 score is another metric that we employed during the evaluation. 
It serves as a composite measure that balances Precision (𝑃 ) and Recall 
(𝑅), and is calculated as: 

𝐹1 = 2𝑃𝑅
𝑃 + 𝑅

, (4)

where Precision is the ratio of correctly predicted positive observations 
to the total predicted positives, and Recall is the ratio of correctly 
predicted positive observations to all observations in the actual class. 
The 𝐹1 score provides a single measure that accounts for both false 
positives and false negatives.

Inference latency is also a crucial metric in our scenario. Given that 
the final solution is intended to process massive amounts of newspaper 
material, achieving low latency is essential for high throughput and 
faster response times. This metric ensures that the model can operate 
efficiently in real-world applications, where quick processing times are 
necessary.

4. Results

Our evaluation explored the performance of several advertisement 
detection models across different conditions. The primary findings are 
summarized in Table  3, which presents a comparative analysis of these 
models. According to the results reported in Table  3, YOLOv8 outper-
forms all other object detectors in the application of advertisement 
detection. In terms of overall detection accuracy, the YOLOv8 model 
outperformed all other models with the highest precision (0.907) and 
mAP50 of (0.956) on Addresseavisen test set, while also achieving the 
fastest inference speed at 1.5 ms. This indicates a superior balance of 
accuracy and efficiency, making it highly suitable for high-throughput 
advertisement detection applications. In contrast, models such as Faster 
R-CNN and Grid R-CNN, despite their robust performance metrics (pre-
cision of 0.87 and 0.83, respectively), showed comparatively slower 
inference times.

To further validate the superiority of YOLOv8, we statistically com-
pared YOLOv8 using two different tests: a paired t-test for pairwise 
comparisons and Friedman for multiple model comparisons. The t-
test is a statistical test used to compare the means of two groups and 
determine if the differences between them are statistically significant. 
It calculates the t-statistic, which measures the size of the difference 
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relative to the variation in the data. A larger t-statistic indicates a more 
significant difference between the two groups.

In this problem, a paired t-test was conducted to compare the 
performance of YOLOv8 with other models across multiple data splits. 
The null hypothesis here states that there is no significant difference 
between YOLOv8 and the other models. A p-value lower than 0.05 
indicates that we can reject the null hypothesis, suggesting a significant 
difference between the models. From Table  4, we can observe that all 
the p-values are far below the threshold of 0.05, confirming that the 
performance differences between YOLOv8 and each of these models 
are statistically significant. Also, the degrees of freedom (df) for this 
problem is 4 and the critical value for a two-tailed test at 𝛼 = 0.05 and 
df = 4 is 2.776 (from the t-distribution table) . From Table  4, we can see 
that the calculated t-statistics are significantly larger than the critical 
value, further supporting the conclusion that YOLOv8’s performance is 
significantly different from (and better than) the other models.

Another statistical test used to evaluate the effectiveness of the 
YOLOv8 algorithm is the Friedman test. As previously stated, this is 
a multiple comparison test. Table  5 shows the average ranks calculated 
using the Friedman statistical test. According to this table, the YOLOv8 
algorithm achieves the highest rank. Additionally, the 𝑃 -value in Table 
5 suggests that the differences in rankings are statistically significant at 
a 5% significance level.

Tables  6 to 9 present our analysis on generalization capabilities of 
models across diverse datasets. These tables explore the performance 
of models on various datasets, illustrating significant variability in 
adaptability.  We evaluate the model based on seen and unseen test sets. 
Seen test sets are pages that come from the same newspaper title(s) that 
were used during training, whereas unseen test sets correspond to pages 
from newspaper titles that were completely absent from the training 
split. For Tables  6 to 9 each model was trained on a single newspaper 
(Berlingske, Adresseavisen, Sydsvenskan, or UK Metro) and evaluated 
on: the seen portion of that same title, and the unseen titles (the 
remaining three newspapers). Our goal is to measure out-of-the-box 
generalization; introducing even a small amount of target data would 
have confounded that comparison. No post-hoc adaptation (e.g., few-
shot fine-tuning, test-time updating, or feature-alignment methods) was 
applied; investigating such strategies to close the seen–unseen gap is 
left for future work. 

Models trained and tested on the same dataset generally performed 
better. For instance, Sydsvenskan model achieved a precision of 0.96, 
a recall of 0.97, and an mAP50 of 0.98. However, when tested on 
different datasets, performance declined sharply, such as the model 
trained on the Berlingske dataset and tested on the Adresseavisen 
dataset, which only achieved a precision of 0.43 and a recall of 0.62. 
This variability underscores the challenges of dataset diversity in model 
robustness.

It is worth mentioning that the performance degradation was not 
uniform across all model-dataset combinations, indicating that certain 
datasets have inherent qualities that may better handle the diversity of 
unseen data. For example, when the Sydsvenskan model was tested on 
the UK Metro dataset, it maintained a precision of 0.75 and a recall of 
0.84, suggesting some level of adaptability.

Building on this observation, we extended our investigation to 
assess the model’s generalization capabilities across a broader range 
of datasets, including both seen and unseen newspapers. Here, ‘seen’ 
refers to the newspaper frames included during training, while ‘unseen’ 
refers to new newspapers that the model has not encountered during 
training, featuring different styles and characteristics. The objective 
was to explore how training data diversity influences the development 
of a robust advertisement detection model. The distinction between 
seen and unseen test sets, based on whether they consist of similar 
or different newspapers from those used in training, illuminates the 
challenges and opportunities in generalizing AI model to varied visual 
content. A robust model must accurately detect advertisements in a 
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Table 3
Comparison of advertisement detectors on adresseavisen newspaper dataset for best 
model selection.
 Model Precision Recall mAP50 Inference 

time (ms)
 Faster R-CNN (Ren et al., 
2015)

0.87 0.86 0.90 47  

 Grid R-CNN (Lu et al., 2019) 0.83 0.83 0.88 47.5  
 DDOD (Chen et al., 2021) 0.85 0.82 0.88 26.2  
 RetinaNetSwin (Lin et al., 
2017; Liu et al., 2021)

0.85 0.81 0.90 32  

 DAB-DETR (Liu et al., 2022) 0.84 0.86 0.87 30.6  
 RTMDet (Lyu et al., 2022) 0.84 0.91 0.88 43.3  
 YOLOv8 (Reis et al., 2023) 0.91 0.87 0.96 1.5  

Table 4
T-test comparison of YOLOv8 and other models in terms of mAP@50. 
 Model 𝑡-statistic p-value  
 RetinaSwin 6.370749 0.003113 
 dab 14.086510 0.000147 
 ddod 4.692708 0.009359 
 faster_rcnn 4.041092 0.015590 
 grid 6.536351 0.002831 
 rtmdet 5.412984 0.005643 

Table 5
The Friedman ranks in terms of mAP50 metric.
 Models Rank  
 YOLOv8 1.0  
 grid 5.4  
 dab 5.4  
 faster_rcnn 3.8  
 ddod 4.7  
 RetinaSwin 3.5  
 rtmdet 4.2  
 P-value 0.0212 

Table 6
Performance of the YOLOv8 model trained on the Berlingske dataset and tested on 
other newspaper datasets.
 Test dataset Precision Recall mAP50 mAP50-95 
 Berlingske (𝑋1) 0.89 0.97 0.97 0.94  
 Adresseavisen (𝑋2) 0.43 0.62 0.49 0.39  
 Sydsvenskan (𝑋3) 0.56 0.60 0.58 0.49  
 UK Metro (𝑋4) 0.66 0.49 0.56 0.48  

Table 7
Performance of the YOLOv8 model trained on the Adresseavisen dataset and tested on 
other newspaper datasets.
 Test dataset Precision Recall mAP50 mAP50-95 
 Berlingske (𝑋1) 0.60 0.71 0.63 0.56  
 Adresseavisen (𝑋2) 0.89 0.85 0.91 0.87  
 Sydsvenskan (𝑋3) 0.80 0.76 0.85 0.76  
 UK Metro (𝑋4) 0.57 0.66 0.61 0.54  

wide range of scenarios, including those that differ from the training 
data.

When evaluated across all samples, the YOLOv8 model achieves 
a good performance, with precision and recall almost at par (0.937 
and 0.933, respectively). This high level of accuracy demonstrates the 
model’s ability to correctly identify advertisements with minimal false 
positives or negatives. The mAP50 and mAP50-95 scores, both ex-
ceeding 0.93, further confirm the model’s robust detection capabilities 
across a broad range of scenarios.

5. Discussion

Our experimental findings, presented in the earlier section, suggests 
that the YOLOv8 model might be learning specific visual cues from 
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Table 8
Performance of the YOLOv8 model trained on the Sydsvenskan dataset and tested on 
other newspaper datasets.
 Test dataset Precision Recall mAP50 mAP50-95

 Berlingske (𝑋1) 0.73 0.67 0.71 0.64  
 Adresseavisen (𝑋2) 0.68 0.79 0.78 0.64  
 Sydsvenskan (𝑋3) 0.96 0.97 0.98 0.95  
 UK Metro (𝑋4) 0.75 0.84 0.85 0.80  

Table 9
Performance of the YOLOv8 model trained on the UK Metro dataset and tested on 
other newspaper datasets.
 Test dataset Precision Recall mAP50 mAP50-95

 Berlingske (𝑋1) 0.49 0.62 0.61 0.55  
 Adresseavisen (𝑋2) 0.64 0.57 0.57 0.44  
 Sydsvenskan (𝑋3) 0.80 0.67 0.78 0.70  
 UK Metro (𝑋4) 0.97 0.98 0.99 0.97  

Table 10
Test results for the YOLOv8 model trained on the Berlingske, Adresseavisen, Sydsven-
skan, and UK Metro (𝑋) train set. The model’s performance is evaluated on multiple 
datasets, including both the newspapers used in training (seen) and entirely new 
newspapers from a different publisher (unseen).
 Test dataset Precision Recall mAP50 mAP50-95 
 All samples (𝑋) 0.94 0.93 0.97 0.94  
 Berlingske (𝑋1) 0.91 0.94 0.97 0.94  
 Adresseavisen (𝑋2) 0.89 0.89 0.93 0.88  
 Sydsvenskan (𝑋3) 0.96 0.98 0.98 0.95  
 UK Metro (𝑋4) 0.99 0.98 0.99 0.98  
 Aftonbladet (unseen) 0.84 0.80 0.87 0.82  
 iTromsø(unseen) 0.79 0.69 0.78 0.66  

the training data, limiting its ability to generalize to unseen layouts or 
styles. These insights are crucial in interpreting the results documented 
in Table  10, where the performance of the model on both seen and 
unseen test sets is evaluated. The high performance on seen test sets, 
including Berlingske, Adresseavisen, Sydsvenskan, and UK Metro, with 
precision and recall rates above 0.89 in all cases, demonstrates the 
model’s proficiency in accurately identifying advertisements in familiar 
contexts. These results, particularly the near-perfect metrics on the 
UK Metro dataset, attest to the model’s effectiveness in environments 
closely aligned with its training data. Such environments, characterized 
by similar visual distributions and content styles, allow the model to 
leverage learned patterns effectively, resulting in high precision and 
recall.

Conversely, the model’s performance suffers when encountering 
unseen data, as evidenced by the drop in accuracy on Aftonbladet and 
iTromsødatasets. These datasets represent newspapers with distinct vi-
sual styles not included in the training data. This highlights a limitation: 
the model’s learned patterns struggle with novel visual distributions, 
leading to reduced precision and recall. To address this and create 
more adaptable models, future research should focus on incorporating 
a broader range of visual styles and content types in training data. 
The observed performance difference between seen and unseen datasets 
offers valuable insights for improving advertisement detection models. 
Strategies such as expanding the diversity of training datasets, em-
ploying domain adaptation techniques, and leveraging unsupervised 
learning to better understand and adapt to novel visual distributions 
are critical.

Our experimental findings provide additional layers of understand-
ing regarding the model’s behavior under varied operational condi-
tions, particularly in terms of feature recognition and model inter-
pretability. Initially, we applied the Grad-CAM++ (Chattopadhay et al., 
2018) technique to elucidate which features the YOLOv8 model prior-
itizes during the Ad detection process. Grad-CAM++ is a visualization 
technique designed to enhance the interpretability of convolutional 
neural networks by highlighting the regions of an input image that are 
most influential for predictions.
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These heatmaps highlight areas that a model might consider impor-
tant when analyzing the content. The red and yellow regions indicate 
high attention or importance, while blue areas denote less attention. 
Notably, the heatmaps show attention around the central figures or 
key text areas in advertisements and headlines. For example, key text 
elements such as prices, product names, and promotional messages tend 
to have high attention scores. Visual elements like faces, bright colors, 
and central figures also attract significant attention.

However, the results indicate some ambiguity in the model’s feature 
prioritization. The heatmaps did not consistently differentiate between 
advertisements and other content, complicating our understanding of 
the model’s focal points. The generated heatmaps do not distinctly 
separate Ads from adjacent content. This is evident in the provided 
samples, where the attention is diffused and does not offer clear guid-
ance on the areas of highest importance, as seen in the images in Fig. 
4.  For example, in the Adresseavisen samples, high activations cluster 
around large numeric price tags and saturated product imagery—
even spilling over into adjacent editorial graphics with similar color 
profiles—indicating a bias toward bold chromatic edges rather than 
true Ad boundaries. Conversely, the more regimented, single-column 
Sydsvenskan inserts produce a tighter, column-shaped attention pat-
tern, suggesting that clear geometric layout cues anchor the model 
more reliably than semantic content alone.

To further explore this issue, we conducted a series of experiments 
by manipulating the advertisement placements and contents within the 
newspaper pages as shown in Fig.  3. One notable experiment involved 
altering the position of an advertisement on a weather prediction page 
from the bottom to another location. Interestingly, the model failed to 
detect the advertisement post-manipulation. This suggests a potential 
overfitting to the advertisement’s original position or a reliance on 
certain contextual cues surrounding the original Ad placement.

Subsequently, replacing the original advertisement with another 
from a different newspaper resulted in successful detection by the 
model. This indicates that the model is capable of recognizing adver-
tisements across different contexts when they conform to previously 
learned features typical of Ads. However, substituting the advertise-
ment with a blank white space led the model to incorrectly classify 
the area as containing an advertisement. This misclassification could be 
attributed to the model’s reliance on certain surrounding elements and 
features that are still present above the white space. These cues, such as 
layout elements (e.g., borders, text formatting) or surrounding editorial 
content (e.g., headlines, captions), might have been used by the model 
to identify the original advertisement, even if the advertisement itself 
was not present. When replaced with blank space, these contextual cues 
might have misled the model, leading to a false positive detection.

This suggests that the model might not be solely focusing on the 
content of the advertisement itself, but also on the surrounding visual 
context. While this can be helpful in some cases, it also highlights 
a potential limitation. Dependence on contextual cues can lead to 
misclassifications when those cues are present without an actual adver-
tisement. Future research could explore methods to make the model less 
reliant on contextual cues and focus more on the specific visual char-
acteristics of advertisements themselves. This could involve techniques 
like training the model on datasets with a wider variety of layouts 
and backgrounds, or incorporating mechanisms that explicitly separate 
content recognition from contextual analysis.

Furthermore, replacing the advertisement with editorial content did 
not trigger any detection, suggesting that the model can differentiate 
between textual content layouts typical of advertisements and those 
of editorials. This differentiation likely arises from distinct features 
learned by the model, such as text arrangement, font size, and ac-
companying graphical elements, which are different in Ads compared 
to editorial content. These observations indicate that while the model 
is quite robust in detecting advertisements in their typical contexts, 
it struggles with Ads that are re-positioned or significantly altered in 
content. This suggests a potential area for improvement in the model’s 
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training to better generalize across varied layouts and content types. 
To address this limitation, we must consider that future Ad placements 
within newspapers by editors are unpredictable. Therefore, it might 
be necessary to augment the dataset with advertisements appearing 
in parts of the editorial content where they have not previously or 
rarely appeared. To further explore the dimensions of model gener-
alizability and robustness, we extended our investigation to examine 
how variations in color influence the YOLOv8 model’s ability to detect 
advertisements. This inquiry was motivated by the hypothesis that 
color, as a distinctive feature in advertisements, might play a critical 
role in the model’s detection capabilities (see Fig.  5 for samples of the 
altered colors).

Table  11 presents the ten-fold cross-validation results of the model 
trained on the Adresseavisen dataset using different image color for-
mats. The table includes the performance metrics alongside the vari-
ance values. The variance is calculated as the deviation between the 
original RGB images and the altered images, providing an indica-
tion of how much the model’s performance is affected by these color 
transformations. For two RGB images, the variance is calculated by 
flattening the images into 1D arrays, computing the difference between 
corresponding pixels, and then finding the variance of these differences. 
For an RGB image and a grayscale image, the variance is computed for 
each RGB channel and the grayscale image separately, and the average 
of the absolute differences between these variances is calculated.

From Table  11, it is evident that the model achieves the highest per-
formance metrics when processing images in the original RGB format, 
with Precision, Recall, mAP50, and mAP50-95 values all in the high 
nineties. The metrics show a progressive decrease in performance as 
the image representation moves further from the original RGB format, 
which can be interpreted in terms of how the model utilizes color in-
formation. The minimal drop in performance when testing on grayscale 
images suggests that while the model does utilize color information, it 
is also effectively leveraging luminance (brightness) information. The 
variance value of 232.7, although it indicates some level of deviation 
from the RGB baseline, still shows that the model retains much of its 
effectiveness, implying that the structure and luminance captured in 
grayscale are sufficient for most detections.

The binary images (converted through thresholding which reduces 
the image to pure black and white based on a luminance threshold) 
show a more pronounced drop in all performance metrics. The higher 
variance value of 4265.4 indicates a significant deviation from the 
performance on RGB images. This suggests that the removal of inter-
mediate shades of gray (which include detailed luminance information) 
impacts the model’s ability to detect and classify objects accurately, 
highlighting the importance of more nuanced luminance details beyond 
mere color.

However, the most notable decline in performance is observed when 
the model processes images with inverted colors. In this case, color 
inversion is achieved by subtracting each pixel’s RGB value from 255, 
reversing color intensities (e.g., black becomes white and vice versa). 
Under these conditions, precision falls to 0.74, and Recall sees a sig-
nificant reduction to 0.58. Furthermore, the mAP50 and mAP50-95 are 
drastically lower, with mAP50 at 0.67 and mAP50-95 at 0.26. The very 
high variance of 7601.2 and poorer performance metrics with inverted 
color images underline the importance of specific color hues and their 
standard luminance patterns in the model’s training. This suggests that 
the model is highly dependent on the natural appearance of colors and 
their arrangements for accurate detection, and color inversion disrupts 
these learned patterns.

The results indicate that there is an inverse correlation between 
variance and performance criteria: as the variance increases, indicating 
greater deviation from the RGB baseline, the performance metrics tend 
to decrease. This inverse correlation highlights that higher variance 
corresponds to conditions under which the model’s effectiveness is 
compromised, underscoring the model’s reliance on familiar color and 
luminance patterns for optimal performance. These findings imply that 
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Table 11
Effect of color on model performance: Ten-fold cross-validation results for the YOLOv8 
model trained on Adresseavisen using original RGB images. 
 Dataset Precision Recall mAP50 mAP50-95 Variance to RGB 
 Original RGB 0.96 0.95 0.98 0.96 0  
 Grayscale 0.94 0.94 0.98 0.94 232.7  
 BinaryColor 0.87 0.78 0.87 0.79 4265.4  
 Inverted color 0.74 0.58 0.67 0.26 7601.2  

while the YOLOv8 model can handle the absence of color to some 
extent, it is dependent on the original color patterns for accurate 
advertisement detection. Future studies could explore mechanisms to 
enhance the model’s robustness to color variations, such as training the 
model on a more diverse dataset that includes multiple color transfor-
mations or improving the model’s architecture to be less sensitive to 
color changes.

6. Conclusion

In this study, we evaluated the effectiveness of various state-of-
the-art object detection models for detecting advertisements in printed 
media. The results indicate that YOLOv8 outperformed other models in 
terms of precision, recall, and inference speed, making it highly suitable 
for high-throughput advertisement detection applications. Tests across 
different newspaper datasets revealed that while the model adapts 
well to newspapers within the source domain, its performance declines 
on unseen target domains. This suggests that incorporating all target 
domain newspapers into the training set may enhance the model’s 
ability to detect Ads across a broader range of newspapers. From the 
analysis, it was observed that the model rely on specific features or 
colors. Future research should focus on creating a general model that 
can effectively detect advertisements across diverse newspaper formats. 
This can be achieved by including a broader range of training data, 
exploring domain adaptation techniques, and leveraging advancements 
in synthetic data generation and transfer learning.
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Fig. 3. Examples of different modifications applied to the images. The bounding boxes indicate detected objects with different confidence levels: high-confidence detections are 
marked with bold green boxes, while low-confidence detections are marked with bold red boxes. The threshold for distinguishing high and low confidence is set to 0.5. Please 
not that the results obtained with a threshold of 0.3 were the same as those obtained with a threshold of 0.5.
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Fig. 4. GradCAM++ heatmaps highlighting YOLOv8 model’s attention areas on different newspaper samples.
Fig. 5. Examples of color variations used to test YOLOv8 model’s detection capabilities.
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