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Abstract. Hyperspectral image (HSI) data contains high-dimensional spectral
information across hundreds of channels per pixel, presenting substantial chal-
lenges for storage and transmission. In this work, we propose a meta-learning-
based compression framework that transforms hyperspectral data into implicit
neural representations. Unlike traditional INR-based compression schemes, which
require per-image training and result in slow encoding, our method leverages a
shared meta-learned base network and learns image-specific modulations through
a lightweight latent code. These modulations serve as compact descriptors that
enable rapid compression while preserving reconstruction quality. We extend
previous work by introducing comparative evaluations against video-based com-
pression schemes, incorporating results on a large-scale HSI dataset exceeding
28 GB, and analyzing the method’s scalability. Experimental results across four
standard benchmarks and a high-resolution dataset demonstrate that our method
achieves significantly faster compression times and superior compression rates,
while maintaining competitive PSNR at extremely low bit-per-pixel-per-band
(bpppb) levels.
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1 INTRODUCTION

Hyperspectral imaging captures a wide range of electromagnetic spectrum values at
each pixel location, in contrast to traditional grayscale or RGB images, which encode
only one or three intensity values per pixel [16]. Each pixel in a hyperspectral im-
age contains dozens or even hundreds of spectral measurements, representing the light
reflectance across various frequency bands. This rich spectral information enhances
the ability to recognize objects, identify materials, and interpret scenes with greater
precision than is possible using standard RGB imagery. As the cost of acquiring high-
resolution hyperspectral data continues to decrease, such images are being applied in an
expanding array of disciplines—including remote sensing, agriculture, biotechnology,
medical diagnostics, pharmaceutical manufacturing, food safety, and resource explo-
ration in mining and the oil and gas industries [26, 4, 1, 19, 42, 33, 13, 18, 14, 7]. How-
ever, the volume of data produced by hyperspectral sensors is substantially larger than
that of RGB images of comparable spatial resolution, leading to challenges in storage,
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Fig. 1: The base network captures the shared structure between multiple hyperspectral
images; whereas, the modulations (or latent vector) store image-specific information.
Meta learning is used to learn both the shared parameters (!, WM, and bM) and the
image-specific latent vectors ¨. Once an image is compressed, it is sufficient to store
the latent vector associated with this image [38].

processing, and transmission. These challenges highlight the critical need for efficient
compression methods. In this study, we focus on hyperspectral image compression as a
means to facilitate the practical use of large-scale hyperspectral datasets.

We introduce a novel compression framework for hyperspectral images that en-
codes each image through modulation vectors applied to a shared base network.1 This
architecture is influenced by the data-agnostic compression model proposed in [11],
which we extend and adapt for the specific challenges posed by hyperspectral data.
Our method departs from traditional implicit neural representation (INR) techniques by
reusing a globally trained base network across multiple images. This enables the model
to leverage recurring spatial and spectral patterns commonly found across hyperspec-
tral scenes, thereby significantly reducing the time required for compression. Addition-
ally, the proposed modulations—compact, image-specific adjustments—are far more
storage-efficient than saving full neural network weights for each image. While the
base network still needs to be retained, its size is shared across the dataset, making it a
negligible cost in practice. The central idea is to factor out and encode the shared struc-
ture among images within the base network, while delegating image-specific content to
lightweight modulation codes. In doing so, our approach improves upon earlier INR-
based methods by achieving meaningful gains in both encoding speed and compression
ratio [40].

To assess the effectiveness of our approach, we conduct extensive experiments on
four widely used hyperspectral datasets: Indian Pines, Jasper Ridge, Pavia University,
and Cuprite. The evaluation demonstrates that our method delivers substantially lower
compression times than many existing techniques operating at comparable compression
levels. In addition to its speed, the proposed framework achieves reconstruction qual-

1An initial version of this work appeared in the proceedings of ICPRAM 2025 [41]. Please
see the attached changes document to see the list of differences between the ICPRAM 2025
conference paper and this article.
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ity—measured by Peak Signal-to-Noise Ratio (PSNR)—that is on par with or better
than that of established compression schemes.

The remainder of this paper is structured as follows. Section 2 reviews relevant work
in hyperspectral image compression and neural representation learning. Section 3 out-
lines our proposed compression framework and describes the evaluation metrics used.
In Section 4, we present the datasets, experimental setup, and results. Section 5 dis-
cusses the large dataset and the results related to compressing that dataset. Finally, Sec-
tion 6 provides a summary of our contributions and discusses future research directions.

2 RELATED WORK

Hyperspectral image compression has been the focus of extensive research in recent
years. Due to space limitations, this section focuses specifically on learning-based ap-
proaches, which have gained significant attention for their ability to model complex
spectral and spatial dependencies. While this overview is not exhaustive, we refer inter-
ested readers to comprehensive surveys such as [50, 10], which catalog a broad range
of compression techniques developed for hyperspectral imagery.

Model-driven learning-based approaches to hyperspectral image compression aim
to optimize both bitrate and reconstruction fidelity through training. However, a com-
mon drawback of such methods is their relatively slow encoding process, which often
involves computationally expensive model optimization for each input. Among these
methods, autoencoders have emerged as a popular choice for compressing hyperspec-
tral data [2]. These networks learn to project pixel spectra into compact latent spaces
from which the full spectral profiles can be reconstructed. Building on this idea, several
works such as [29, 30] incorporate autoregressive models to improve entropy coding.
Ballé et al. later refined these approaches by introducing the use of hyperpriors, which
provide additional context for more efficient and accurate compression [3].

Implicit neural representations (INRs) have recently gained attention as a promis-
ing tool for data compression [12, 11]. For instance, Davies et al. applied INRs to the
compression of 3D mesh data, demonstrating improved performance over traditional
mesh decimation techniques [8]. Similarly, implicit networks have been employed to
compress 2D images [45] and videos [6], with encouraging results. Zhang et al. also
explored INR-based methods for video compression, further validating the versatility
of this approach [51]. In our prior work, we extended this idea to the domain of hyper-
spectral image compression, using implicit neural networks to encode high-dimensional
spectral data [40]. Despite their advantages in compact representation and quality, a no-
table drawback of INR-based compression methods is their typically slow encoding
speed, which stems from the need to fit a neural model per data instance.

Lee et al. [25] demonstrated that meta-learning can be used to produce sparse and
parameter-efficient initializations for implicit neural networks, enabling accurate image
reconstruction with significantly fewer parameters. Building on similar ideas, Strum-
pler et al. [45] showed notable gains over earlier work such as [12] by learning effec-
tive MLP initializations, and then applying quantization and entropy coding to com-
press the resulting network weights. Our current work draws direct inspiration from the
meta-learning approach proposed in [11], which enhances the INR compression process
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through modulation-based parameterization. Here, we expand on our earlier hyperspec-
tral image compression framework [40] by integrating a meta-learning strategy. The re-
sult is a system that achieves both faster encoding and more compact representations,
demonstrating the practical value of combining INRs with meta-learned components in
this domain.

3 METHOD

Let us denote a hyperspectral image as I → RW↑H↑C, where W and H represent the
spatial dimensions and C is the number of spectral bands. Each spatial coordinate
(x,y) corresponds to a spectral vector I[x,y] → RC, where x → [1,W] and y → [1,H].
In our previous work, we showed that it is feasible to use implicit neural representa-
tions (INRs) to learn a continuous mapping from spatial locations to spectral signa-
tures. This is achieved by training a function ΅! parameterized by weights ! such that
΅!(x,y) ↓↔ I[x,y]. The model is optimized by minimizing the following reconstruction
loss:

L(I,΅!) = !
↗x,y

↘I[x,y] –΅!(x,y)↘ .

Previous research [47, 44] has established that SIREN networks—multi-layer per-
ceptrons (MLPs) that use sine activation functions—are particularly effective at captur-
ing high-frequency signals over structured grids. These networks have become a stan-
dard choice for constructing implicit neural representations. In our setting, we employ
a SIREN-based architecture (΅!) composed of K hidden layers, each utilizing sinu-
soidal activations. The activations at each layer are denoted by h1,h2, . . . ,hK, with the
network defined as:

hi = sin(Wihi–1 + bi) ,

where the input h0 → R2 corresponds to normalized pixel coordinates. The first layer
uses weights W1 →Rd↑2 and biases b1 →Rd, while subsequent layers for i → [2,K] use
Wi → Rd↑d and bi → Rd. The final output layer produces:

hK+1 = WK+1hK + bK+1,

with WK+1 → RC↑d and bK+1 → RC, yielding hK+1 → RC, the predicted spectral vec-
tor. The complete set of learnable parameters is given by ! = {Wi,bi | i → [1,K + 1]}.
Once training is complete, these parameters serve as a compact representation of the
hyperspectral image. Compression is achieved when the storage cost of the network
parameters is less than that of the original image data.

Although SIREN networks have proven effective for compressing hyperspectral im-
ages, the approach has two notable limitations. First, the encoding process is computa-
tionally intensive and slow. Second, the method does not take advantage of the common
spatial or spectral patterns shared across different images—patterns that are often lever-
aged in traditional RGB image processing. These drawbacks arise from the need to train
a separate SIREN model from scratch for each individual image. Since no parameters
are reused, training must be repeated in full for every sample, typically requiring many
iterations and significant computational effort.
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3.1 Modulated SIREN Network

To overcome the limitations of traditional SIREN-based compression, we propose a
meta-learning approach in which a shared SIREN model, referred to as the base net-
work, is used across multiple hyperspectral images. Rather than training separate mod-
els for each image, we encode image-specific information via modulations applied to
the hidden features hi, where i → [1,K]. These modulations consist of learned shift and
scale parameters.

This idea draws inspiration from the FiLM (Feature-wise Linear Modulation) mech-
anism introduced by Perez et al. [36], where each feature map hi is transformed using:

FiLM(hi) = ῭i ≃hi +%i,

with ῭i and %i denoting element-wise scaling and shifting vectors, respectively. Such
operations allow different behaviors to be embedded within the same underlying net-
work by modulating its internal activations.

Chan et al. [5] extended this concept by incorporating modulation into SIREN
networks for generative modeling. In their formulation, modulations (scale ῭ and shift
%) are applied as follows:

hi = sin
(
῭i ≃ (Wihi–1 + bi) +%i

)
.

Similarly, Mehta et al. [27] proposed a modulated INR framework where only multi-
plicative modulation is applied (scale ·i):

hi = ·i ≃ sin(Wihi–1 + bi) ,

allowing for efficient parameterization of a family of networks using shared architecture
and modulated latent codes.

These approaches demonstrate that it is feasible to generate modulation parameters
from a compact latent code. For instance, Chan et al. [5] utilize a multilayer perceptron
(MLP) to transform a latent vector into the scale (῭i) and shift (%i) parameters applied
at each layer. In contrast, Mehta et al. [27] employ a recursive strategy to derive the
scaling factors ·i directly from a fixed latent representation. Despite their effectiveness,
both methods require storing not only the shared base network but also the parameters
of the auxiliary networks used to compute the modulations. This added storage over-
head makes such approaches less practical for data compression applications, where
minimizing memory footprint is essential.

Dupont et al. [11] investigated how modulation can enhance SIREN-based net-
works and found that applying only additive shifts %i to the hidden activations is suf-
ficient to capture meaningful variations across inputs. Their findings indicate that in-
cluding scale modulations offers negligible benefit, and using scale alone is not effec-
tive. Following this insight, our method exclusively uses additive modulations, applying
shifts to each layer’s activations in the SIREN architecture as follows:

hi = sin
(
Wihi–1 + bi +%i

)
, (1)

where each shift vector %i → Rd. From a compression standpoint, this design is highly
efficient: the modulations %1, . . . ,%K require significantly fewer parameters than storing
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the full set of weights Wi and biases bi. Since the base network is shared across multiple
images, its cost can be amortized, making the modulation-based encoding highly com-
pact. Additional compression efficiency can be achieved by generating the modulation
parameters from a compact latent code ¨ → Rdlatent . Dupont et al. [11] demonstrated
that a simple linear transformation is sufficient to map this latent vector to the required
modulation %i, and that employing deeper neural networks such as multi-layer percep-
trons offers minimal improvement in this context. Following their findings, we adopt a
linear projection of the form:

% = WM¨+ bM, (2)

where WM →R(d)(K)↑dlatent and bM →R(d)(K) are the weight matrix and bias vector of the
linear layer. This layer, which we refer to as the meta network, produces a concatenated
vector % = [%1| · · · |%K] that contains the shift modulations for all hidden layers.

With this formulation, a hyperspectral image I can be reconstructed by evaluating
the modulated base network ΅!(x,y;%1, . . . ,%K) at each spatial coordinate (x,y). Al-
ternatively, we can use the latent code directly by evaluating ΅!(x,y;¨,!M), where
!M = {WM,bM} denotes the parameters of the meta network responsible for generat-
ing the modulations (see Figure 1) [38].

3.2 Meta Learning

Model-Agnostic Meta-Learning (MAML) [15] is a framework designed to learn a fa-
vorable initialization for model parameters !, allowing the model to adapt quickly to
new but related tasks using only a few gradient updates. This meta-learning paradigm
has been shown to improve the efficiency of training implicit neural representations
by reducing the number of optimization steps needed to accurately fit new data [43].
In the context of our work, consider a collection of hyperspectral images denoted as
I(1), . . . ,I(T). The goal is to determine an initial set of model parameters ! for the func-
tion ΅! such that it can rapidly adapt to any image within this set. MAML employs a
two-stage optimization process. In the inner loop, task-specific updates are computed
by performing a gradient descent step for each image:

!(t) =!–·inner∀!L
(

I(t),΅!
)

,

where ·inner is the learning rate used for adaptation. In the outer loop, the initial param-
eters ! are refined based on the performance of the adapted models:

! =!–·outer∀! !
t→[1,T]

L
(

I(t),΅!(t)

)
,

where ·outer is the meta-learning rate. This process yields a parameter initialization
that generalizes well across the distribution of tasks, in this case, hyperspectral image
instances. In practical implementations of MAML, the inner loop typically operates on
a single randomly selected image t from the dataset. For the outer loop, it is generally
sufficient to sample a subset of images rather than using the full batch. This stochastic
sampling makes the meta-training process more efficient. The resulting initialization !
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enables the model to rapidly adapt to a new, unseen hyperspectral image with minimal
fine-tuning, significantly reducing the time required for encoding.

The standard MAML formulation is not directly applicable to our scenario, as our
goal is to learn image-specific modulations while reusing a common base network
across multiple hyperspectral images. To address this, we adopt the strategy proposed
by Zintgraf et al. [53], which involves partitioning the model parameters into two dis-
tinct categories. The first group, known as context parameters, is specific to individual
tasks (or images) and is updated during the inner loop. The second group consists of
shared parameters that remain consistent across tasks and are optimized in the outer
loop through meta-learning.

We incorporate this parameter separation into our framework as follows. Given a
collection of hyperspectral images, we designate the base network parameters as !,
which are shared across all images, and associate each image with its own set of mod-
ulation vectors %(t) = {%(t)0 , . . . ,%(t)K }. During the inner loop, we adapt the modulation
parameters for each image by performing a gradient update:

%(t) = %–·inner∀¨L
(

I(t),΅[!|¨]

)
,

where ·inner denotes the learning rate used for the image-specific adaptation. In the
outer loop, we refine the shared parameters ! by evaluating the loss with respect to the
adapted modulations across the dataset:

! =!–·outer !
t→[1,T]

∀!L
(

I(t),΅[!|¨(t)]

)
.

Starting value for % is fixed and [53] suggests to set the initial values for % = 0. ΅[!|¨]
denotes the modulated SIREN network (see Equation 1). To further reduce storage re-
quirements, we generate modulation vectors using the linear mapping introduced in
Equation 2, where modulations are derived from a latent code ¨. As with %, the latent
vector ¨ is initialized to zero at the beginning of training.

In this formulation, our objective is to learn a unique latent vector ¨(t) for each
image. The training procedure mirrors the earlier modulation-based approach. In the
inner loop, we adapt the latent vector for image t by computing:

¨(t) = ¨–·inner∀΅L
(

I(t),΅[!+|΅]

)
,

where !+ includes all parameters involved in generating the modulations from the la-
tent vector. In the outer loop, we update the shared parameters !+ by aggregating the
gradients computed from the loss with respect to the adapted modulations:

!+ =!+ –·outer !
t→[1,T]

∀!+ L
(

I(t),΅[!+|¨(t)]

)
.

In this context, !+ = {!,WM,bM} represents the full set of shared parameters, encom-
passing both the weights of the base network and those of the linear projection used to
generate modulations from the latent vectors. While !+ remains consistent across all
images, each image-specific latent vector ¨(t) captures the unique content of its corre-
sponding hyperspectral image [38].
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(a) Indian Pines (b) Jasper Ridge

(c) Pavia University (d) Cuprite

Fig. 2: PSNR vs. bpppb values. PSNR values achieved at various bpppb for our method
(meta-learning), along with those obtained by other methods. x-axis represents bpppb
values and y-axis represents PSNR values.

4 RESULTS

We selected JPEG [17, 37], JPEG2000 [9] and PCA-DCT [31] schemes as baselines
as these are widely adopted in the hyperspectral image analysis pipelines. In addition
to these, we compare our proposed approach against both our prior work on implicit
neural representations for hyperspectral image compression [40] and a broad set of
techniques from the literature, including: PCA-JPEG2000 [9], FPCA-JPEG2000 [28],
RPM [35], 3D SPECK [48], 3D DCT [49], 3D DWT+SVR [52], WSRC [32], MPEG
[24], X264 [20], X265 [20], PCA-X264 [20], PCA-X265 [20], PCA-JPEG2000 [20, 22,
21], and autoencoder [23] methods. We also include comparisons with several variants
of our own earlier approaches that employ implicit neural representations: ours-32bit,
ours-16bit,m ours-sampling-32bit, and ours-sampling-16bit [39].

We conduct our experiments on four widely used hyperspectral image benchmarks:
(1) Indian Pines (145↑145↑220), (2) Jasper Ridge (100↑100↑224), (3) Pavia Uni-
versity (610↑340↑103), and (4) Cuprite (614↑512↑224).

4.1 Metrics

To evaluate the reconstruction quality of compressed hyperspectral images, we em-
ploy two standard metrics: Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Er-
ror (MSE). PSNR, measured in decibels (dB), is widely used in image compression
research to quantify the fidelity of a reconstructed image relative to its original coun-
terpart. Higher PSNR values indicate better preservation of the original image content
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and thus better compression performance. Complementarily, MSE captures the average
squared difference between the original and compressed images. Lower MSE values
correspond to more accurate reconstructions.

The MSE is defined as:

MSE = !
i

↘I[i] – Ĩ[i]↘
i

, (3)

where I[i] and Ĩ[i] refer to the original and reconstructed pixel values, respectively, and
i ranges over all pixel indices. Using MSE, PSNR is computed as:

PSNR = 10 log10

(
R2

MSE

)
, (4)

where R represents the maximum possible value of the input pixel intensity.
In addition to PSNR and MSE, we report the bits-per-pixel-per-band (bpppb) to

quantify the compression efficiency of our method. This metric reflects the number
of bits required to represent each pixel in each spectral band after compression. Lower
bpppb values indicate higher compression rates, as less information is needed to encode
the image.

For uncompressed hyperspectral images, bpppb typically corresponds to either 8
or 32 bits, depending on whether the data is stored in integer or floating-point format.
In most cases, hyperspectral images are stored using 32-bit floating-point values per
channel. The bpppb metric is calculated as:

bpppb =
#parameters↑ (bits per parameter)

(pixels per band)↑#bands
, (5)

where the numerator represents the total number of bits required to store the model, and
the denominator corresponds to the number of data values in the original image.

4.2 Practical matters

All models in our framework are implemented using PyTorch [34]. For the inner-loop
updates, we apply Stochastic Gradient Descent (SGD) with a learning rate of 1↑10–2,
while the outer-loop optimization is carried out using the Adam optimizer with a learn-
ing rate set to either 1↑ 10–6 or 3↑ 10–6. Prior to training, spatial pixel coordinates
(x,y) are normalized to lie within the range [–1,1]↑ [–1,1], and spectral values at each
pixel are scaled to fall between 0 and 1. In cases where the shared base network is ap-
plied to hyperspectral datasets with differing numbers of spectral channels, we exclude
any unmatched channels during loss computation to ensure consistency.

4.3 PSNR vs. bpppb

Figure 2 shows PSNR values at various compression rates for different methods. Specif-
ically, we compare our approach, labeled as meta-learning, with ours-32bit, ours-16bit,
ours-sampling-32bit, ours-sampling-16bit, JPEG, JPEG2000, PCA-DCT, MPEG, X264,
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Indian Pines Jasper Ridge
Method Size (KB) PSNR bpppb nh,wh Method Size (KB) PSNR bpppb nh,wh

- 9251 # 16 -,- - 4800 # 16 -,-
JPEG [17, 37] 115.6 34.085 0.2 -,- JPEG [17, 37] 30 21.130 0.1 -,-
JPEG2000 [9] 115.6 35.84 0.2 -,- JPEG2000 [9] 30 17.494 0.1 -,-

PCA-DCT [31] 115.6 33.173 0.2 -,- PCA-DCT [31] 30 26.821 0.1 -,-
PCA-JPEG2000 [9] 115.6 39.5 0.2 -,- PCA-JPEG2000 [9] 30 - 0.1 -,-

FPCA-JPEG2000 [28] 115.6 40.5 0.2 -.- FPCA-JPEG2000 [28] 30 - 0.1 -,-
HEVC [46] 115.6 32 0.2 -,- HEVC [46] 30 - 0.1 -,-
RPM [35] 115.6 38 0.2 -,- RPM [35] 30 - 0.1 -,-

3D SPECK [48] 115.6 - 0.2 -,- 3D SPECK [48] 30 - 0.1 -,-
3D DCT [49] 115.6 - 0.2 -,- 3D DCT [49] 30 - 0.1 -,-

3D-DWT-SVR [52] 115.6 - 0.2 -,- 3D-DWT-SVR [52] 30 - 0.1 -,-
WSRC [32] 115.6 - 0.2 -,- WSRC [32] 30 - 0.1 -,-

ours-32bit [39] 115.6 42.22 0.2 5,60 ours-32bit [39] 30 32.54 0.1 5,20
ours-16bit [39] 57.5 29.68 0.1 5,60 ours-16bit [39] 15 22.07 0.06 5,20

ours-sampling-32bit [40] 115.6 42.22 0.2 5,60 ours-sampling-32bit [40] 30 34.77 0.1 5,20
ours-sampling-16bit [40] 57.5 29.68 0.2 5,60 ours-sampling-16bit [40] 15 22.07 0.06 5,20

meta-learning 0.0032 33.36 6.9e-6 10,128 meta-learning 0.0032 30.87 1.4e-5 10,128
Pavia University Cuprite

Method Size (KB) PSNR bpppb nh,wh Method Size (KB) PSNR bpppb nh,wh
- 42724 # 16 -,- - 140836 # 16 -,-

JPEG [17, 37] 267 20.253 0.1 -,- JPEG [17, 37] 880.2 24.274 0.1 -,-
JPEG2000 [9] 267 17.752 0.1 -,- JPEG2000 [9] 880.2 20.889 0.1 -,-

PCA-DCT [31] 267 25.436 0.1 -,- PCA-DCT [31] 880.2 27.302 0.1 -,-
PCA-JPEG2000 [9] 267 - 0.1 -,- PCA-JPEG2000 [9] 880.2 40.90 0.1 -,-

FPCA-JPEG2000 [28] 267 - 0.1 -,- FPCA-JPEG2000 [28] 880.2 - 0.1 -,-
HEVC [46] 267 - 0.1 -,- HEVC [46] 880.2 31 0.1 -,-
RPM [35] 267 - 0.1 -,- RPM [35] 880.2 34 0.1 -,-

3D SPECK [48] 267 - 0.1 -,- 3D SPECK [48] 880.2 27.1 0.1 -,-
3D DCT [49] 267 - 0.1 -,- 3D DCT [49] 880.2 33.4 0.1 -,-

3D-DWT-SVR [52] 267 - 0.1 -,- 3D-DWT-SVR [52] 880.2 28.20 0.1 -,-
WSRC [32] 267 - 0.1 -,- WSRC [32] 880.2 35 0.1 -,-

ours-32bit [39] 267 34.46 0.1 10,80 ours-32bit [39] 880.2 28.954 0.1 25,100
ours-16bit [39] 133.5 34.17 0.05 10,80 ours-16bit [39] 440.1 24.334 0.06 25,100

ours-sampling-32bit [40] 267 38.08 0.1 10,80 ours-sampling-32bit [40] 880.2 36.55 0.1 25,90
ours-sampling-16bit [40] 133.5 27.49 0.05 10,80 ours-sampling-16bit [40] 440.1 24.91 0.06 25,90

meta-learning 0.0032 32.79 1.4e-6 10,128 meta-learning 0.0032 24.57 4.5e-7 10,128

Table 1: Compression rates on four benchmarks. For each benchmark, the first row lists
the actual size (in KB) of the original hyperspectral image. For each method, the first
column shows the size of the compressed image (in KB), the second column shows the
PSNR achieved by comparing the decompressed image with the original image, and the
third column shows the bpppb achieved. For approaches that rely upon implicit neural
representations, the structure of the network is described by showing the number of
hidden layers nh and the width of these layers wh. Please note that previously, K is used
to denote the number of hidden layers and d is used to denote the width of these layers,
i.e., nh = K and nw = d. The size of the base network, which is shared across all datasets
in the meta-learning method, is 710 KB.
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Dataset Method bppppb compression time (Sec) decompression time (Sec) PSNR ⇐

Indian Pines

JPEG [17, 37] 0.1 7.353 3.27 27.47
JPEG2000 [9] 0.1 0.1455 0.3115 33.58
PCA-DCT [31] 0.1 1.66 0.04 32.28
ours-32bit [39] 0.1 243.64 0 36.98
ours-16bit [39] 0.05 243.64 0 36.95

ours-sampling-32bit [40] 0.1 282.08 0.0005 40.1
ours-sampling-16bit [40] 0.05 282.08 0.0005 40.1

meta-learning 6.9e-6 0.033 0.000717 33.36

Jasper Ridge

JPEG [17, 37] 0.1 3.71 1.62 21.13
JPEG2000 [9] 0.1 0.138 0.395 17.49
PCA-DCT [31] 0.1 1.029 0.027 26.82
ours-32bit [39] 0.1 312.38 0.0005 32.54
ours-16bit [39] 0.06 312.38 0.0005 32.51

ours-sampling-32bit [40] 0.1 75.91 0.0005 34.77
ours-sampling-16bit [40] 0.06 75.91 0.0005 22.07

meta-learning 1.4e-5 0.025 0.0007 30.87

Pavia University

JPEG [17, 37] 0.1 33.86 14.61 20.25
JPEG2000 [9] 0.1 0.408 0.628 17.75
PCA-DCT [31] 0.1 6.525 0.235 25.43
ours-32bit [39] 0.1 780.16 0.0009 34.46
ours-16bit [39] 0.05 780.16 0.0009 34.17

ours-sampling-32bit [40] 0.1 72.512 0.0004 38.08
ours-sampling-16bit [40] 0.05 72.512 0.0004 27.02

meta-learning 1.4e-6 0.43 0.0006 32.79

Cuprite

JPEG [17, 37] 0.06 101.195 45.02 12.88
JPEG2000 [9] 0.06 1.193 2.476 15.16
PCA-DCT [31] 0.06 11.67 0.754 26.75
ours-32bit [39] 0.06 1565.97 0.001 28.02
ours-16bit [39] 0.03 1565.97 0.001 27.90

ours-sampling-32bit [40] 0.06 664.87 0.001 37.27
ours-sampling-16bit [40] 0.03 664.87 0.001 24.85

meta-learning 4.5e-7 1.11 0.0007 24.57

Table 2: Compression and decompression times for various methods. The proposed
method (meta-learning) achieves the fastest compression times of any method on the
four benchmarks. The size of the base network, which is shared across all datasets in
the meta-learning method, is 710 KB.

X265, PCA-X264, PCA-X265, PCA-JPEG2000, and autoencoder methods. Here ours-
32bit and ours-sampling-32bit methods store MLP weights as 32-bit floating point val-
ues, whereas ours-16bit and ours-sampling-16bit store MLP weights at half-precision
as 16-bit floating point values that are constructed by quantizing the MLP weights.

Across all four datasets, the meta-learning-based compression approach demon-
strates a distinct advantage by achieving higher PSNR values at extremely low bpppb
levels, where most competing methods are unable to perform effective compression.

From these results, the following conclusions can be drawn: (1) the proposed method
achieves high-quality compression even at high compression ratios, indicating its ro-
bustness and efficiency, and (2) the quality of compression achieved by our method con-
sistently surpasses that of the three widely used compression methods for hyperspectral
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images. This highlights the potential of our approach in addressing the challenges of
hyperspectral image compression more effectively than traditional techniques.

4.4 Compression Results

As shown in Table 1, our proposed meta-learning-based compression method consis-
tently produces the smallest file sizes across all evaluated benchmarks. The table pro-
vides a comparison of compression performance, including PSNR values and output
sizes (in KB), for a variety of existing methods. It is important to note that some entries
are missing due to unavailable results for certain benchmarks—for instance, PSNR val-
ues for the 3D_SPECK method are not reported for the Indian Pines dataset. Across all
four datasets, our approach achieves the highest compression rates, significantly reduc-
ing the storage footprint of hyperspectral images. However, in terms of reconstruction
quality, the PSNR achieved by meta-learning is slightly lower than that of some com-
peting techniques on Indian Pines, Jasper Ridge, and Cuprite. On the Pavia University
dataset, our method delivers PSNR performance comparable to the ours-sampling-32bit
baseline. While there is room for improvement in reconstruction fidelity, it is notewor-
thy that our method offers these results at a fraction of the storage cost required by other
compression schemes.

A primary motivation for this study was to significantly reduce the lengthy com-
pression times typically associated with implicit neural representation-based methods
for hyperspectral image compression. Table 2 summarizes the compression and decom-
pression times, along with corresponding PSNR values, for a range of competing ap-
proaches. Notably, our meta-learning framework delivers the fastest compression times
among all evaluated methods. More importantly, it outperforms prior implicit neural
compression techniques by a substantial margin in terms of speed, demonstrating that
our method is far more practical for real-time or large-scale deployment.

Table 3 evaluates meta-learning against seven video-based methods that treat vari-
ous channels of a hyperspectral image as frames of a video and employ video coding
techniques to achieve compression.2 Our method achieves better results than all other
methods on the Pavia University dataset. Additionally, our method achieves the second-
best PSNR value on the Cuprite dataset.

5 Proof of Concept: Compressing a Large Hyperspectral Image

We evaluated our meta-learned compression network on a large hyperspectral image to
demonstrate its ability to handle high-resolution images (Figure 3). The spatial reso-
lution of this image is 4192↑ 6708, and it has 270 channels. The image requires ap-
proximately 28.2 GB of storage space. The size of this image underscores the need to
develop compression algorithms for hyperspectral images. The model proposed in this
paper successfully compresses this image to 141 KB.

To manage the complexity of the data, we partition the image into a 7 ↑ 7 grid
and treat each row as an independent unit. Each row is compressed using a dedicated

2It is not possible to include the results presented in Table 3 in Table 1 since the bpppb values
used by video-based methods do not match those used by methods listed in Table 1.
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Method bpppb PSNR ⇐ Method bpppb PSNR ⇐

In
di

an
Pi

ne
s

X264 [20, 22, 21] 0.1 34.61

Ja
sp

er
R

id
ge

X264 [20, 22, 21] 0.15 37.35
X265 [20, 22, 21] 0.1 38.5 X265 [20, 22, 21] 0.15 36.12

PCA-X264 [20, 22, 21] 0.1 39.8 PCA-X264 [20, 22, 21] 0.15 35.35
PCA-X265 [20, 22, 21] 0.1 38.1 PCA-X265 [20, 22, 21] 0.15 39.94

MPEG [24] 0.1 28.9 MPEG [24] 0.15 28.75
HEVC [46] 0.1 30 HEVC [46] 0.15 -
RPM [35] 0.1 31 RPM [35] 0.15 -

meta-learning 0.004151 36.46 meta-learning 0.0085 36.67

Pa
vi

a
U

ni
ve

rs
ity

X264 [20, 22, 21] 0.1 37.17

C
up

rit
e

X264 [20, 22, 21] 0.03 28.6
X265 [20, 22, 21] 0.1 37.90 X265 [20, 22, 21] 0.03 31.8

PCA-X264 [20, 22, 21] 0.1 28.13 PCA-X264 [20, 22, 21] 0.03 35.5
PCA-X265 [20, 22, 21] 0.1 17.82 PCA-X265 [20, 22, 21] 0.03 21.7

MPEG [24] 0.1 26.01 MPEG [24] 0.03 25.5
HEVC [46] 0.1 - HEVC [46] 0.03 25
RPM [35] 0.1 - RPM [35] 0.03 29

meta-learning 0.0008 39.1 meta-learning 0.0001 33.64

Table 3: Comparing the proposed method (meta-learning) against video-based schemes.
Our method achieves better results than all other methods on the Pavia University
dataset. Additionally, our method achieves the second-best PSNR value on the Cuprite
dataset. The size of the base network, which is shared across all datasets in the meta-
learning method, is 710 KB.

network trained to capture its unique spatial and spectral characteristics. In total, we
train seven distinct networks, one per row, ensuring that the compression is tailored
to the local structure and variability of the data. Each row is divided into seven cells.
The structure that is unique to each cell is captured through modulations. Each model
contains

(2↑10 + 10) + 4(10↑10 + 10) + (10↑270) + (32↑50 + 50) = 4820

parameters. Latent modulations ¨ → R32 capture the structure in each cell. Therefore,
for each cell we need to store 32 parameters. The number of parameters for the seven
models plus the modulations is

7(4820 + 7(32)) = 35,068.

Assume we store each parameter as a 4-byte floating point value, the disk space needed
to store the compressed image is roughly 141 KB. This is significantly less than the disk
space occupied by the uncompressed image.

We compare the performance of our method against several baselines, including
ours-sampling-32bit, ours-sampling-16bit, JPEG, and MPEG, with a focus on the Peak
Signal-to-Noise Ratio (PSNR). Due to memory constraints, we were not able to use
JPEG to compress the entire image in a single step. Thus, the image was divided into
smaller tiles. Next, each tile was compressed using JPEG. The PSNR value was com-
puted by reconstructing the full image. Table 4 presents this comparison. Our meta-
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Fig. 3: Visualization of the large (28.2 GB) 4192↑6708 hyperspectral image with 270
channels. The image is divided into a 7↑7 grid. Each row is compressed independently.
Row specific meta networks capture the overall row structure; whereas, modulations are
responsible to encoding the structure present in the cell within a row. A total of 7 meta
networks are used to compress this image.

learned model achieves PSNR values comparable to JPEG and MPEG, while signifi-
cantly reducing the bits per pixel per band (bpppb), demonstrating both its compression
efficiency and high fidelity.

6 CONCLUSIONS

In this work, we introduced a meta-learning framework for compressing hyperspec-
tral images using implicit neural representations. Our method separates image-specific
content from a shared, meta-trained base network, enabling efficient encoding through
modulation vectors generated from compact latent codes. This design facilitates both
faster compression and significant reductions in storage requirements. We extended
previous work by conducting additional comparative studies, including video-based
compression baselines, and demonstrated the scalability of our method on a large hy-
perspectral dataset exceeding 28 GB. Our findings reveal that the proposed method
achieves state-of-the-art compression speed with competitive or superior PSNR scores,
especially at extremely low compression rates. These results establish our framework
as a practical and efficient solution for large-scale hyperspectral data storage and trans-
mission. Future directions include improving reconstruction quality through entropy
coding and exploring downstream task performance under compressed representations.
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Method PSNR bpppb Size(KB) ⇒
meta-learning 23.40 4.6e-6 141

ours-sampling-32bit 25.23 0.017 16133
ours-sampling-16bit 25.23 0.008 7592

JPEG 20.21 0.242 229669
MPEG 25.20 0.024 22777

Table 4: Comparison of different image compression methods, including our meta-
learning approach, ours-sampling-32bit, ours-sampling-16bit, JPEG, and MPEG, based
on Peak Signal-to-Noise Ratio (PSNR), bits per pixel per band (bpppb), and compressed
file size (in bytes). The meta-learning method demonstrates a competitive PSNR and
significantly reduced file size compared to JPEG and MPEG.
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