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Abstract: Hyperspectral images capture the electromagnetic spectrum for each pixel in a scene. These often store hun-
dreds of channels per pixel, providing significantly more information compared to a comparably sized RGB
color image. As the cost of obtaining hyperspectral images decreases, there is a need to create effective ways
for storing, transferring, and interpreting hyperspectral data. In this paper, we develop a neural compression
method for hyperspectral images. Our methodology relies on transforming hyperspectral images into implicit
neural representations, specifically neural functions that establish a correspondence between coordinates (such
as pixel locations) and features (such as pixel spectra). Instead of explicitly saving the weights of the implicit
neural representation, we record modulations that are applied to a base network that has been “meta-learned.”
These modulations serve as a compressed coding for the hyperspectral image. We conducted an assessment
of our approach using four benchmarks—Indian Pines, Jasper Ridge, Pavia University, and Cuprite—and our
findings demonstrate that the suggested method posts significantly faster compression times when compared
to existing schemes for hyperspectral image compression.

1 INTRODUCTION

Hyperspectral images differ from grayscale images
in that they record the electromagnetic spectrum for
each pixel rather than just storing a single value per
pixel in the case of grayscale images or three val-
ues per pixel in the case of RGB images (Goetz
et al., 1985). Consequently, every pixel in a hy-
perspectral image comprises 10s or 100s of values,
which indicate the measured reflectance in different
frequency bands. Hyperspectral images give more
extensive opportunities for item recognition, material
identification, and scene analysis compared to a stan-
dard color RGB image. The costs linked to acquir-
ing high-resolution hyperspectral images, which in-
clude both spatial and spectral data, are steadily de-
clining. Consequently, hyperspectral images are find-
ing increased use in diverse fields, such as remote
sensing, biotechnology, crop analysis, environmen-
tal monitoring, food production, medical diagnosis,
pharmaceutical industry, mining, and oil & gas ex-
ploration (Liang, 2012; Carrasco et al., 2003; Afro-
mowitz et al., 1988; Kuula et al., 2012; Schuler

a https://orcid.org/0000-0002-4554-5800
b https://orcid.org/0000-0002-8992-3607

et al., 2012; Padoan et al., 2008; Edelman et al.,
2012; Gowen et al., 2007; Feng and Sun, 2012; Clark
and Swayze, 1995). Hyperspectral images necessi-
tate storage space that is orders of magnitude more
than that required for a color RGB image of the same
size. Therefore, there is much interest in devising ef-
fective strategies for obtaining, storing, transmitting,
and evaluating hyperspectral images. With the under-
standing that compression plays a significant role in
the storage and transmission of hyperspectral images,
this work studies the problem of hyperspectral image
compression.

Specifically, we develop a new approach for hy-
perspectral image compression that stores a hyper-
spectral image as modulations that are applied to
the internal representations of a base network that is
shared across hyperspectral images. This work is in-
spired by (Dupont et al., 2022) that studies data ag-
nostic nueral compression, and applies the scheme
that Dupont et al. proposed to the problem of hy-
perspectral image compression. This approach of-
fers two advantages over methods that use implicit
neural representations for hyperspectral image com-
pression: 1) since the base network is shared between
multiple hyperspectral images, the method is able to
exploit spatial and spectral structural similarities be-



tween different hyperspectral images, reducing en-
coding (or compression) times; and 2) modulations
require much less space to store than the space needed
to store the “weights” of the implicit neural. While
we still need to store the weights of the base network,
this cost is amortized between multiple hyperspectral
images. The intuition behind this approach is that the
base network captures the overarching structure that is
common among multiple hyperspectral images while
the modulations store image specific details. Com-
pared to the previous approaches for hyperspectral
image compression using implicit neural representa-
tions, this method proposed in this work achieves sav-
ings both in terms of computation and storage (Reza-
soltani and Qureshi, 2024).

The proposed method is evaluated using four stan-
dard benchmarks: Indian Pines, Jasper Ridge, Pavia
University, and Cuprite. The results show that the
method presented here achieves significantly faster
compression times as compared to a number of ex-
isting methods at similar compression rates. Further-
more that the compression quality, as measured using
Peak Signal-to-Noise Ratio (PSNR), is comparable to
that achieved by other approaches.

The rest of the paper is organized as follows. We
discuss the related work in the next section. Section 3
describes the proposed method along with the evalua-
tion metrics. Datasets, experimental setup, and com-
pression results are discussed in Section 4. Section 5
concludes the paper with a summary.

2 RELATED WORK

There has been much work in the field of hyper-
spectral image compression. In the interest of space,
we will restrict the following discussion to learning-
based schemes for hyperspectral image compression.
The discussion presented herein is by no means com-
plete and we refer the kind reader to (Zhang et al.,
2023; Dua et al., 2020) that list various hyperspectral
image compression methods found in the literature.

Learning based schemes rely upon model training
in order to reduce both rate and distortions. Almost
all learning based methods suffer from slow encod-
ing (or compression) speeds. Oftentimes this can-
not be avoided since encoding involves at least some
sort of model training. Within the space of learning-
based schemes, autoencoders have been employed to
compress hyperspectral images (Ballé et al., 2016).
In its simplest form, autoencoders construct lower-
dimensional latent representations of pixel spectra.
The original pixel spectra is reconstructed from these
representations to arrive at the source hyperspectral

images. Methods proposed in as (Mentzer et al.,
2018; Minnen et al., 2018) enhance an autoregres-
sive model to enhance entropy encoding. Ballé et al.
subsequently expand these works by using hyperpri-
ors (Ballé et al., 2018).

Implicit neural network representations have also
been studied for data compression (Dupont et al.,
2021; Dupont et al., 2022). Davies et al., for ex-
ample, uses such representations to compress 3D
meshes (Davies et al., 2020). They show that implicit
neural representations achieve better results than dec-
imated meshes. Similarly (Strümpler et al., 2022) and
(Chen et al., 2021) uses such representations to com-
press images and videos, respectively. Zhang et al.
also studies video compression using implicit neural
representations (Zhang et al., 2021). In our previ-
ous work, we have used implicit neural representa-
tions to compress hyperspectral images (Rezasoltani
and Qureshi, 2024). Approaches that employ implicit
neural representations for “data compression” suffer
from slow encoding times.

In their 2021 paper, (Lee et al., 2021), Lee et al.
demonstrate that meta-learning sparse and parameter-
efficient initializations for implicit neural representa-
tions can significantly reduce the number of param-
eters required to represent an image at a given re-
construction quality. Paper (Strümpler et al., 2022)
achieves significant performance improvements over
(Dupont et al., 2021) by meta-learning an MLP
initialization, followed by quantization and entropy
coding of the MLP weights fitted to images. As
stated earlier, this work is inspired by the approach
discussed in (Dupont et al., 2022) that improves
upon implicit neural network learning as presented
in (Dupont et al., 2021) by employing meta learn-
ing. Specifically, we extends our prior work (Reza-
soltani and Qureshi, 2024) by exploiting metal learn-
ing framework. We show that it is indeed possible
to lower encoding times and reduce storage needs by
using implicit neural representations within a metal
learning setting.

3 METHOD

Consider a hyperspectral image I ∈ RW×H×C, where
W and H denote the width and the height of this image
and C denotes the number of channels. I(x,y) ∈ RC

represents the spectrum recorded at location (x,y)
where x ∈ [1,W] and y ∈ [1,H]. In our prior work, we
demonstrate that it is possible to learn implicit neural
represenations that map pixel locations to pixel spec-
tra. Specifically, we can learn a functionΦΘ : (x,y) 7→
I(x,y). Here, Θ represent function parameters. The



Figure 1: The base network captures the shared structure between multiple hyperspectral images; whereas, the modulations
(or latent vector) stores image-specific information. Meta learning is used to learn both the shared parameters (Θ, WM, and
bM) and the image specific latent vectors φ. Once an image is compressed, it is sufficient to store the latent vector associated
with this image.

implicit neural network is trained by minimizing the
loss

L(I,ΦΘ) = ∑
∀x,y

∥I(x,y) –ΦΘ(x,y)∥.

Others (Tancik et al., 2020; Sitzmann et al.,
2020b) have shown that SIREN networks—multi-
layer perceptrons with Sine activation functions—
are particularly well-suited to encode high-frequency
data that sits on a grid. SIREN networks are widely
used to learn implicit neural representations. For our
purposes, a SIREN network (ΦΘ) comprises of K hid-
den layers. Each layer uses a sinosoidal activation
function. The K hidden features at each layer are
h1,h2,h3, · · · ,hK. Specifically, we define the SIREN
network as:

hi = sin(Wihi–1 + bi) ,

where h0 ∈ R2 denotes the 2D pixel locations, W1 ∈
Rd×2, b1 ∈ Rd, and for i ∈ [2,K], Wi ∈ Rd×d and
≂i,bi ∈ Rd. The output of the network is

hK+1 = WK+1hK + bK+1,

with WK+1 ∈ RC×d and hK+1,bK+1 ∈ RC. hK+1 is
the output of the model, in our case pixel spectrum.
Wi and bi denote the weights and biases for layer
i ∈ [1,K + 1] and represent the learnable parameters
of the network. Once this network is trained on a
given hyperspectral image, it is sufficient to store the
parameters Θ = {Wi,bi|i ∈ [1,K + 1]}, since it is pos-
sible to recover the original image by evaluating ΦΘ
at pixel locations (x,y). Savings are achieved when it
takes fewer bits to encode ΦΘ than those required to
encode the original image.

While we have successfully employed SIREN net-
works to compress hyperspectral images, the current

scheme suffers from two drawbacks: 1) slow com-
pression times and 2) its inability to exploit spatial
and spectral structure that is shared between hyper-
spectral images, not unlike how spatial structure is
used when analyzing RGB images. Both (1) and (2)
are due to the a fact that a new SIREN network needs
to be trained for scratch for each hyperspectral im-
age. Training is time consuming process that often re-
quires multiple epochs, and no information is shared
between multiple images.

3.1 Modulated SIREN Network

In this work we address the two shortcomings by us-
ing a meta learning approach that employs a SIREN
network (henceforth referred to as the base net-
work) that is shared between multiple hyperspec-
tral images. Image specific details are stored within
modulations—scales and shifts—applied to the fea-
tures hi, i ∈ [0,N] of the base network. This is in-
spired by the work of Perez et al., which introduced
FiLM layers (Perez et al., 2018)

FiLM(hi) = γi ⊙hi +βi
that apply scale γi and shift βi to a hidden feature hi.
Here ⊙ denotes element-wise product. Applying shift
and scale at each layer in effect allow us to parameter-
ize family of neural networks using a common (fixed)
base network. Chan et al. propose a scheme where a
SIREN network is used to parameterize the generator
in a generative-adversarial setting (Chan et al., 2021).
There new samples are generated by applying modu-
lations (scale γ and shift β) as follows:

hi = sin
(
γi (Wihi–1 + bi) +βi

)
.

Similarly, Mehta et al. show that it is possible to pa-
rameterize a family of implicit neural representation



by applying modulations to the hidden features as
(scale αi) (Mehta et al., 2021)

hi = αi ⊙ sin(Wihi–1 + bi) .

Both of these approach show that it is possible to map
a low-dimensional latent vector to the modulations
that are applied to the hidden features. E.g., (Chan
et al., 2021) uses an MLP to map a latent vector to
scale γi and shift βi. Mehta et al., on the other hand,
construct the modulation αi recursively using a fixed
latent vector. These schemes, however, require that
the parameters of the base network, plus the parame-
ters of the networks needed to compute the modula-
tions are stored. As a consequence these schemes are
not well-suited to the problem of data compression.

Work by Dupont et al. studied using modulations
to improve SIREN networks (Dupont et al., 2022).
They concluded that it is sufficient to just use shifts
βis, and that using scale modulations do not result
in a significant improvement in performance. Fur-
thermore, their work also suggests that applying scale
modulations alone does not result in an improvement.
We follow their advice and apply shift modulations to
the features of the SIREN networks:

hi = sin
(
(Wihi–1 + bi) +βi

)
, (1)

here βi ∈ Rd. It is easy to imagine that storing
modulations β0, · · · ,βK takes less space than storing
weights Wi and biases bi of the base network (under
the assumption that the cost of storing the base net-
work parameters is amortized over multiple images).
It is possible to achieve further savings by mapping a
low-dimensional latent vector φ ∈ Rdlatent to modula-
tions. Dupont et al. also showed that it is sufficient
to use a linear mapping to construct modulations βi
given a latent vector, and that using a multi-layer per-
ceptron network offers little benefit. Therefore, we
use a linear mapping to construct modulations given
a latent vector as:

β = WMφ+ bM, (2)

with WM ∈ R(d)(K)×dlatent and bM ∈ R(d)(K), the
weights and biases of the linear layer used to project
latent vector to modulations β =

[
β0| · · · |βK

]
. We re-

fer to the linear layer that maps the latent vector to
modulation as the meta network. Under this setup,
it is possible to reconstruct the original hyperspectral
image I by evaluating the modulated base network
ΦΘ

(
x,y;β0, · · · ,βK

)
at image pixel locations (x,y).

Similarly, when using the latent code, we can achieve
the same result by evaluating ΦΘ

(
x,y;φ,ΘM

)
, where

ΘM = {WM,bM}, at image pixel locations (see Fig-
ure 1).

3.2 Meta Learning

Model Agnostic Meta Learning (MAML) learns an
initialization of model parameters Θ, such that, the
model can be quickly adapted to a new (related)
task (Finn et al., 2017). It has been shown that
MAML approaches can benefit implicit neural repre-
sentations by reducing the number of epochs needed
to fit the representation to a new data point (Sitzmann
et al., 2020a). We begin by discussing MAML within
our context. Say we are given a set of hyperspectral
images I(1), · · · ,I(T). Furthermore, assume we want
to initialize the parameters Θ of the model ΦΘ over
this set of images. MAML comprises of two loops:
(1) in the inner loop MAML computes image specific
update

Θ
(t) =Θ–αinner∇ΘL

(
I(t),ΦΘ

)
;

and (2) in the outer loop it updates Θ with respect
to the performance of the model (after the inner loop
update) on the entire set:

Θ =Θ–αouter∇Θ ∑
t∈[1,T]

L
(

I(t),Φ
Θ(t)

)
.

In practice image t is randomly chosen in the inner
loop step, and it is often sufficient to sample a subset
of images in the outer loop step. The result is model
initialization parameters Θ that will allow the model
to be quickly adapted to a previously unseen hyper-
spectral image, reducing encoding in times.

The approach discussed above is not directly ap-
plicable in our setting, since we seek to learn image
specific modulations that are applied to a base net-
work that is shared between multiple hyperspectral
images. We follow the strategy discussed in (Zint-
graf et al., 2019) where they partition the parameters
into two sets. The first set, termed context parameters,
are “task” specific and these are adapted in the inner
loop; where as, the second set is shared across “tasks”
and are meta-learned in the outer loop.

We apply this approach to our problem as fol-
lows. Given a set of hyperspectral images, parame-
tersΘ of the base networks and image specific modu-
lations βt = {β(t)0 , · · · ,β(t)K }, we first update image spe-
cific modulations in the inner loop as

β
(t) = β–αinner∇βL

(
I(t),Φ[Θ|β]

)
;

and then update the parameters Θ in the outer loop

Θ =Θ–αouter ∑
t∈[1,T]

∇ΘL
(

I(t),Φ[Θ|β(t)]

)
.

Starting value for β is fixed and (Zintgraf et al., 2019)
suggests to set the initial values for β = 0. Φ[Θ|β]



denotes the modulated SIREN network (see Equa-
tion 1).

To achieve further savings, we employ linear map-
ping defined in Equation 2 to construct modulations
from a given latent vector φ. As before, we can ini-
tialize φ = 0. Here, the goal is to learn image spe-
cific latent vectors φ(t). The procedure is similar, first
image specific latent vectors are updated in the inner
loop as

φ
(t) = φ–αinner∇φL

(
I(t),Φ[Θ+|φ]

)
.

Next, parameters Θ+ are updated in the outer loop

Θ
+ =Θ+ –αouter ∑

t∈[1,T]
∇Θ+ L

(
I(t),Φ[Θ+|β(t)]

)
.

Here Θ+ = {Θ,WM,bM} denotes parameters of the
base network plus the parameters of the linear map-
ping used to construct modulations from latent vec-
tors. Parameters Θ+ are shared between images and
latent vectors φ encode information specific to corre-
sponding image.

4 RESULTS

We selected JPEG (Good et al., 1994; Qiao et al.,
2014), JPEG2000 (Du and Fowler, 2007) and PCA-
DCT (Nian et al., 2016) schemes as baselines, since
these methods are widely deployed within the hyper-
spectral image analysis pipelines. Additionally, we
compare the method proposed with prior work that
uses implicit neural representations for hyperspectral
image compression (Rezasoltani and Qureshi, 2024).
Lastly, we will also provide compression results for
the following schemes: PCA+JPEG2000 (Du and
Fowler, 2007), FPCA+JPEG2000 (Mei et al., 2018),
RPM (Paul et al., 2016), 3D SPECK (Tang and Pearl-
man, 2006), 3D DCT (Yadav and Nagmode, 2018),
3D DWT+SVR (Zikiou et al., 2020), and WSRC
(Ouahioune et al., 2021). We employ four commonly
used hyperspectral benchmarks in this study: (1) In-
dian Pines (145×145×220); (2) Jasper Ridge (100×
100× 224); (3) Pavia University (610× 340× 103);
and (4) Cuprite (614×512×224).

4.1 Metrics

Peak Signal-to-Noise Ratio (PSNR) and Mean
Squared Error (MSE) metrics are used to capture the
quality of the “compressed” image. PSNR, expressed
in decibels, is a commonly employed statistic in the
field of image compression. It quantifies the dispar-
ity in “quality” between the original image and its

compressed reproduction. A higher PSNR number in-
dicates that the compressed image closely resembles
the original image, meaning that it retains more of the
original image’s information and has superior quality.
Furthermore, we employ MSE to compare the com-
pressed image with its original version to capture the
overall differences. Smaller values of MSE indicate a
higher quality of reconstruction. MSE is computed as
follows

MSE = ∑
i

|I[i] – Ĩ[i]|2

i
, (3)

where Ĩ denotes the compressed image and i indices
over the pixels. MSE is used to calculate PSNR

PSNR = 10 log10

(
R2

MSE

)
, (4)

where R is the largest variation in the input image in
the previous Equation.

Furthermore, the value of bits-per-pixel-per-band
(bpppb) represents the degree of compression attained
by a model. Smaller values of bpppb correspond to
greater compression rates. The bpppb of an uncom-
pressed hyperspectral image can be either 8 or 32 bits,
depending on the storage method used for the pixels.
Hyperspectral pixel values are typically stored as 32-
bit floating point numbers for each channel. The pa-
rameter bpppb is calculated as follows:

bpppb =
#parameters× (bits per parameter)

(pixels per band)×#bands
. (5)

4.2 Practical matters

We utilize PyTorch (Paszke et al., 2019) to imple-
ment all of our models. In the inner loop, we employ
Stochastic Gradient Descent (SGD) with a learning
rate of 1e-2. In the outer loop, we utilize the Adam
optimization algorithm with a learning rate of either
1e-6 or 3e-6. Pixel locations (x,y) are converted to
normalized coordinates, i.e., (x,y) ∈ [–1,1]× [–1,1].
Pixel spectrum values are scaled to be between 0 and
1. When the base network is shared between hyper-
spectral images having a different number of chan-
nels, we simply discard the unused channels during
loss computation.

4.3 PSNR vs. bpppb

Figure 2 plots PSNR values achieved by JPEG,
JPEG2000, PCA DCT, and INR approaches at vari-
ous bpppbs. Meta learning refers to the method de-
veloped here. The plots suggest the proposed ap-
proach achieves highest PSNR values at lower bpppb.
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Figure 2: PSNR vs. bpppb values. PSNR values achieved at various bpppb for our method (Meta learning), along with those
obtained by JPEG, JPEG2000, PCA-DCT, and INR schemes. x-axis represents bpppb values and y-axis represents PSNR
values.

Indian Pines Jasper Ridge
Method Size (KB) PSNR bpppb nh,wh Method Size (KB) PSNR bpppb nh,wh

- 9251 ∞ 16 -,- - 4800 ∞ 16 -,-
JPEG (Good et al., 1994; Qiao et al., 2014) 115.6 34.085 0.2 -,- JPEG (Good et al., 1994; Qiao et al., 2014) 30 21.130 0.1 -,-

JPEG2000 (Du and Fowler, 2007) 115.6 36.098 0.2 -,- JPEG2000 (Du and Fowler, 2007) 30 17.494 0.1 -,-
PCA-DCT (Nian et al., 2016) 115.6 33.173 0.2 -,- PCA-DCT (Nian et al., 2016) 30 26.821 0.1 -,-

PCA+JPEG2000 (Du and Fowler, 2007) 115.6 39.5 0.2 -,- PCA+JPEG2000 (Du and Fowler, 2007) 30 - 0.1 -,-
FPCA+JPEG2000 (Mei et al., 2018) 115.6 40.5 0.2 -.- FPCA+JPEG2000 (Mei et al., 2018) 30 - 0.1 -,-

HEVC (Sullivan et al., 2012) 115.6 32 0.2 -,- HEVC (Sullivan et al., 2012) 30 - 0.1 -,-
RPM (Paul et al., 2016) 115.6 38 0.2 -,- RPM (Paul et al., 2016) 30 - 0.1 -,-

3D SPECK (Tang and Pearlman, 2006) 115.6 - 0.2 -,- 3D SPECK (Tang and Pearlman, 2006) 30 - 0.1 -,-
3D DCT (Yadav and Nagmode, 2018) 115.6 - 0.2 -,- 3D DCT (Yadav and Nagmode, 2018) 30 - 0.1 -,-
3D DWT+SVR (Zikiou et al., 2020) 115.6 - 0.2 -,- 3D DWT+SVR (Zikiou et al., 2020) 30 - 0.1 -,-

WSRC (Ouahioune et al., 2021) 115.6 - 0.2 -,- WSRC (Ouahioune et al., 2021) 30 - 0.1 -,-
INR (Rezasoltani and Qureshi, 2023) 115.6 40.61 0.2 15,40 INR (Rezasoltani and Qureshi, 2023) 30 35.696 0.1 10,20

HP INR (Rezasoltani and Qureshi, 2023) 57.5 40.35 0.1 15,40 HP INR (Rezasoltani and Qureshi, 2023) 15 35.467 0.06 10,20
INR sampling (Rezasoltani and Qureshi, 2024) 115.6 44.46 0.2 15,40 INR sampling (Rezasoltani and Qureshi, 2024) 30 41.58 0.1 15,20

HP INR sampling (Rezasoltani and Qureshi, 2024) 57.5 30.20 0.2 15,40 HP INR sampling (Rezasoltani and Qureshi, 2024) 15 21.48 0.06 15,20
Meta learning 2.4 36.6 0.004 5,20 Meta learning 2.3 36.6 0.008 10,60

Pavia University Cuprite
Method Size (KB) PSNR bpppb nh,wh Method Size (KB) PSNR bpppb nh,wh

- 42724 ∞ 16 -,- - 140836 ∞ 16 -,-
JPEG (Good et al., 1994; Qiao et al., 2014) 267 20.253 0.1 -,- JPEG (Good et al., 1994; Qiao et al., 2014) 880.2 24.274 0.1 -,-

JPEG2000 (Du and Fowler, 2007) 267 17.752 0.1 -,- JPEG2000 (Du and Fowler, 2007) 880.2 20.889 0.1 -,-
PCA-DCT (Nian et al., 2016) 267 25.436 0.1 -,- PCA-DCT (Nian et al., 2016) 880.2 27.302 0.1 -,-

PCA+JPEG2000 (Du and Fowler, 2007) 267 - 0.1 -,- PCA+JPEG2000 (Du and Fowler, 2007) 880.2 27.5 0.1 -,-
FPCA+JPEG2000 (Mei et al., 2018) 267 - 0.1 -,- FPCA+JPEG2000 (Mei et al., 2018) 880.2 - 0.1 -,-

HEVC (Sullivan et al., 2012) 267 - 0.1 -,- HEVC (Sullivan et al., 2012) 880.2 31 0.1 -,-
RPM (Paul et al., 2016) 267 - 0.1 -,- RPM (Paul et al., 2016) 880.2 34 0.1 -,-

3D SPECK (Tang and Pearlman, 2006) 267 - 0.1 -,- 3D SPECK (Tang and Pearlman, 2006) 880.2 27.1 0.1 -,-
3D DCT (Yadav and Nagmode, 2018) 267 - 0.1 -,- 3D DCT (Yadav and Nagmode, 2018) 880.2 33.4 0.1 -,-
3D DWT+SVR (Zikiou et al., 2020) 267 - 0.1 -,- 3D DWT+SVR (Zikiou et al., 2020) 880.2 28.20 0.1 -,-

WSRC (Ouahioune et al., 2021) 267 - 0.1 -,- WSRC (Ouahioune et al., 2021) 880.2 35 0.1 -,-
INR (Rezasoltani and Qureshi, 2023) 267 33.749 0.1 20,60 INR (Rezasoltani and Qureshi, 2023) 880.2 28.954 0.1 25,100

HP INR (Rezasoltani and Qureshi, 2023) 133.5 20.886 0.05 20,60 HP INR (Rezasoltani and Qureshi, 2023) 440.1 24.334 0.06 25,100
INR sampling (Rezasoltani and Qureshi, 2024) 267 40.001 0.1 10,100 INR sampling (Rezasoltani and Qureshi, 2024) 880.2 37.007 0.1 25,100

HP INR sampling (Rezasoltani and Qureshi, 2024) 133.5 27.49 0.05 10,100 HP INR sampling (Rezasoltani and Qureshi, 2024) 440.1 24.96 0.06 25,100
Meta learning 2.1 39.1 0.0008 10,60 Meta learning 0.8 33.6 0.0001 5,60

Table 1: Compression rates on four benchmarks. For each benchmark, the first row lists the actual size (in KB) of the original
hyperspectral image. For each method, the first column shows the size of the compressed image (in KB), the second column
shows the PSNR achieved by comparing the decompressed image with the original image, and the third column shows the
bpppb achieved. For approaches that rely upon implicit neural representations, the structure of the network is described by
show the number of hidden layers nh and the width of these layers wh. Please note that previously K is used to denote the
number of hidden layers and d is used to denote the width of these layers, i.e. nh = K and nw = d.



Dataset Method bppppb compression time (Sec) decompression time (Sec) PSNR ↑

Indian Pines

JPEG (Good et al., 1994; Qiao et al., 2014) 0.1 7.353 3.27 27.47
JPEG2000 (Du and Fowler, 2007) 0.1 0.1455 0.3115 33.58

PCA-DCT (Nian et al., 2016) 0.1 1.66 0.04 32.28
INR (Rezasoltani and Qureshi, 2023) 0.1 243.64 0 36.98

HP INR (Rezasoltani and Qureshi, 2023) 0.05 243.64 0 36.95
INR sampling (Rezasoltani and Qureshi, 2024) 0.1 132.87 0.0005 39.20

HP INR sampling (Rezasoltani and Qureshi, 2024) 0.05 132.87 0.0005 29.94
Meta learning 0.004151 0.014 0.000518 36.64

Jasper Ridge

JPEG (Good et al., 1994; Qiao et al., 2014) 0.1 3.71 1.62 24.39
JPEG2000 (Du and Fowler, 2007) 0.1 0.138 0.395 16.75

PCA-DCT (Nian et al., 2016) 0.1 1.029 0.027 25.98
INR (Rezasoltani and Qureshi, 2023) 0.1 235.19 0.0005 35.77

HP INR (Rezasoltani and Qureshi, 2023) 0.06 235.19 0.0005 35.70
INR sampling (Rezasoltani and Qureshi, 2024) 0.1 126.33 0.0005 40.20

HP INR sampling (Rezasoltani and Qureshi, 2024) 0.06 126.33 0.0005 19.58
Meta learning 0.0085 0.014 0.0004 36.67

Pavia University

JPEG (Good et al., 1994; Qiao et al., 2014) 0.1 33.86 14.61 20.86
JPEG2000 (Du and Fowler, 2007) 0.1 0.408 0.628 17.02

PCA-DCT (Nian et al., 2016) 0.1 6.525 0.235 25.121
INR (Rezasoltani and Qureshi, 2023) 0.1 352.74 0.0009 33.67

HP INR (Rezasoltani and Qureshi, 2023) 0.05 352.74 0.0009 19.75
INR sampling (Rezasoltani and Qureshi, 2024) 0.1 72.512 0.0004 38.08

HP INR sampling (Rezasoltani and Qureshi, 2024) 0.05 72.512 0.0004 27.02
Meta learning 0.0008 0.016 0.0005 39.1

Cuprite

JPEG (Good et al., 1994; Qiao et al., 2014) 0.06 101.195 45.02 12.88
JPEG2000 (Du and Fowler, 2007) 0.06 1.193 2.476 15.16

PCA-DCT (Nian et al., 2016) 0.06 11.67 0.754 26.75
INR (Rezasoltani and Qureshi, 2023) 0.06 1565.97 0.001 28.02

HP INR (Rezasoltani and Qureshi, 2023) 0.03 1565.97 0.001 27.90
INR sampling (Rezasoltani and Qureshi, 2024) 0.06 664.87 0.001 37.27

HP INR sampling (Rezasoltani and Qureshi, 2024) 0.03 664.87 0.001 24.85
Meta learning 0.0001 0.009 0.0002 33.64

Table 2: Compression and decompression times for various methods. The proposed method (Meta learning) achieves the
fastest compression times of any method on the four benchmarks.

Furthermore, that the proposed approach achieves
bpppb values that are less than those achieved by
other schemes.

4.4 Compression Results

Results listed in Table 1 confirm that the proposed
scheme (Meta learning) achieves better PSNR and
the smallest file size (in KB) on the our bench-
marks. The table also includes compression results
achieved by other methods. Note that compression
results for every method is not available for every
benchmark; therefore, the table also contain empty
entries—for example, PSNR score for not available
for 3D SPECK scheme for Indian Pines. For every
benchmark, Meta learning achieves the highest com-
pression rate, which results in the smallest storage
requirements for the compressed image. The PSNR
scores, however, are worse than those achieved by
other methods on three of the four benchmarks: In-
dian Pines, Jasper Ridge and Cuprite. Meta learning
achieves PSNR that is similar to INR sampling on
Pavia University. Clearly, there is more work to be
done in order to improve the PSNR scores. It is worth
noting, however, that these PSNR scores are achieved
at a fraction of the storage requirements needed by
other schemes.

The key impetus of this work was to address

the slow compression times associated with implicit
neural network based hyperspectral image compres-
sion methods. Table 2 displays the compres-
sion and decompression times plus PSNR values for
various methods. The fourth column shows com-
pression times for various methods. Meta learning
achieved fastest compression times of any method on
this list. More importantly, the proposed approach
achieves compression times that are a fraction of
those posted by previous implicit neural representa-
tion based schemes.

5 CONCLUSIONS

We proposed a meta-learning approach for using im-
plicit neural representations for hyperspectral image
compression. The proposed approach shares a base
network between multiple hyperspectral images. Im-
age specific modulations store image details and these
modulations are applied to the base network to recon-
struct the original image. The results confirm that the
proposed method achieves much faster compression
time when compared to existing approaches that use
implicit neural representations. We have also com-
pared our approach with a number of other schemes
for hyperspectral image compression, and the results



confirm the suitability of the method developed here
for the purposes of hyperspectral image compression.
In the future, we plan to focus on improving com-
pression quality, i.e., achieving higher PSNR scores,
while maintaining fast compression times.

REFERENCES

Afromowitz, M. A., Callis, J. B., Heimbach, D. M., DeSoto,
L. A., and Norton, M. K. (1988). Multispectral imag-
ing of burn wounds. In Medical Imaging II, volume
914, pages 500–504. SPIE.
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